Grabski Robert, Szul Tomasz, Sasaki Takako, Timpl Rupert, Mayne Richard, Hicks Barrett, Sztul Elizabeth
Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Hum Genet. 2003 Oct;113(5):406-16. doi: 10.1007/s00439-003-0992-7. Epub 2003 Aug 20.
The COCH gene mutated in autosomal dominant sensorineural deafness (DFNA9) encodes cochlin, a major constituent of the inner ear extracellular matrix. Sequence analysis of cochlin from DFNA9 patients identified five distinct single-amino-acid mutations within a conserved region (the LCCL domain) of cochlin. To define the molecular basis of DFNA9, we have generated myc-tagged wild-type and mutant cochlins and explored their behavior in transient transfection systems. Western blotting of cell lysates and culture media indicates that wild-type and mutant cochlins are synthesized and secreted in similar amounts. Immunofluorescent staining confirms that all are detected within the endoplasmic reticulum and the Golgi complex of transfected cells. Our findings suggest that COCH mutations are unlikely to cause abnormalities in secretion and suggest that extracellular events might cause DFNA9 pathology. In agreement, we show that wild-type cochlin accumulates in extracellular deposits that closely parallel the matrix component fibronectin, whereas mutant cochlins vary in the amount and pattern of extracellular material. Whereas some mutants exhibit an almost normal deposition pattern, some show complete lack of deposition. Our results suggest that DFNA9 results from gene products that fail to integrate correctly into the extracellular matrix. The partial or complete penetrance of integration defects suggests that DFNA9 pathology may be caused by multiple molecular mechanisms, including compromised ability of cochlin to self-assemble or to form appropriate complexes with other matrix components.
在常染色体显性遗传性感音神经性耳聋(DFNA9)中发生突变的COCH基因编码耳蜗素,它是内耳细胞外基质的主要成分。对DFNA9患者的耳蜗素进行序列分析,在耳蜗素的一个保守区域(LCCL结构域)内鉴定出五个不同的单氨基酸突变。为了确定DFNA9的分子基础,我们生成了带有myc标签的野生型和突变型耳蜗素,并在瞬时转染系统中研究了它们的行为。对细胞裂解物和培养基进行蛋白质免疫印迹分析表明,野生型和突变型耳蜗素的合成和分泌量相似。免疫荧光染色证实,在转染细胞的内质网和高尔基体中均能检测到所有类型的耳蜗素。我们的研究结果表明,COCH突变不太可能导致分泌异常,提示细胞外事件可能导致DFNA9的病变。与此一致的是,我们发现野生型耳蜗素积聚在细胞外沉积物中,这些沉积物与基质成分纤连蛋白紧密平行,而突变型耳蜗素在细胞外物质的数量和模式上有所不同。一些突变体表现出几乎正常的沉积模式,而一些则完全没有沉积。我们的结果表明,DFNA9是由未能正确整合到细胞外基质中的基因产物引起的。整合缺陷的部分或完全外显率表明,DFNA9的病变可能是由多种分子机制引起的,包括耳蜗素自我组装或与其他基质成分形成适当复合物的能力受损。