Suppr超能文献

通过不应期机制实现网络同步的时机。

Timing of network synchronization by refractory mechanisms.

作者信息

Wiedemann Urs Achim, Lüthi Anita

机构信息

Centre Européen de Recherche Nucléaire, Theory Division, CH-1211 Geneva 23, Switzerland.

出版信息

J Neurophysiol. 2003 Dec;90(6):3902-11. doi: 10.1152/jn.00284.2003. Epub 2003 Aug 20.

Abstract

Even without active pacemaker mechanisms, temporally patterned synchronization of neural network activity can emerge spontaneously and is involved in neural development and information processing. Generation of spontaneous synchronization is thought to arise as an alternating sequence between a state of elevated excitation followed by a period of quiescence associated with neuronal and/or synaptic refractoriness. However, the cellular factors controlling recruitment and timing of synchronized events have remained difficult to specify, although the specific temporal pattern of spontaneous rhythmogenesis determines its impact on developmental processes. We studied spontaneous synchronization in a model of 600-1,000 integrate-and-fire neurons interconnected with a probability of 5-30%. One-third of neurons generated spontaneous discharges and provided a background of intrinsic activity to the network. The heterogeneity and random coupling of these neurons maintained this background activity asynchronous. Refractoriness was modeled either by use-dependent synaptic depression or by cellular afterhyperpolarization. In both cases, the recruitment of neurons into spontaneous synchronized discharges was determined by the interplay of refractory mechanisms with stochastic fluctuations in background activity. Subgroups of easily recruitable neurons served as amplifiers of these fluctuations, thereby initiating a cascade-like recruitment of neurons ("avalanche effect"). In contrast, timing depended on the precise implementation of neuronal refractoriness and synaptic connectivity. With synaptic depression, neuronal synchronization always occurred stochastically, whereas with cellular afterhyperpolarization, stochastic turned into periodic behavior with increasing synaptic strength. These results associate the type of refractory mechanism with the temporal statistics and the mechanism of synchronization, thereby providing a framework for differentiating between cellular mechanisms of spontaneous rhythmogenesis.

摘要

即使没有主动的起搏器机制,神经网络活动的时间模式同步也能自发出现,并参与神经发育和信息处理。自发同步的产生被认为是在兴奋增强状态和随后与神经元和/或突触不应期相关的静止期之间交替出现的序列。然而,尽管自发节律发生的特定时间模式决定了其对发育过程的影响,但控制同步事件募集和时间的细胞因素仍难以确定。我们在一个由600 - 1000个积分发放神经元组成的模型中研究自发同步,这些神经元以5% - 30%的概率相互连接。三分之一的神经元产生自发放电,并为网络提供内在活动背景。这些神经元的异质性和随机耦合使这种背景活动保持异步。不应期通过使用依赖的突触抑制或细胞超极化后电位来模拟。在这两种情况下,神经元募集到自发同步放电是由不应期机制与背景活动中的随机波动相互作用决定的。易于募集的神经元亚群充当这些波动的放大器,从而启动神经元的级联募集(“雪崩效应”)。相比之下,时间取决于神经元不应期和突触连接性的精确实现。在突触抑制的情况下,神经元同步总是随机发生,而在细胞超极化后电位的情况下,随着突触强度增加,随机行为转变为周期性行为。这些结果将不应期机制的类型与时间统计和同步机制联系起来,从而为区分自发节律发生的细胞机制提供了一个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验