Suppr超能文献

用于审查医疗费用和死亡率的共享随机效应模型。

A shared random effects model for censored medical costs and mortality.

作者信息

Liu Lei, Wolfe Robert A, Kalbfleisch John D

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA.

出版信息

Stat Med. 2007 Jan 15;26(1):139-55. doi: 10.1002/sim.2535.

Abstract

In this paper, we propose a model for medical costs recorded at regular time intervals, e.g. every month, as repeated measures in the presence of a terminating event, such as death. Prior models have related monthly medical costs to time since entry, with extra costs at the final observations at the time of death. Our joint model for monthly medical costs and survival time incorporates two important new features. First, medical cost and survival may be correlated because more 'frail' patients tend to accumulate medical costs faster and die earlier. A joint random effects model is proposed to account for the correlation between medical costs and survival by a shared random effect. Second, monthly medical costs usually increase during the time period prior to death because of the intensive care for dying patients. We present a method for estimating the pattern of cost prior to death, which is applicable if the pattern can be characterized as an additive effect that is limited to a fixed time interval, say b units of time before death. This 'turn back time' method for censored observations censors cost data b units of time before the actual censoring time, while keeping the actual censoring time for the survival data. Time-dependent covariates can be included. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with a Metropolis-Hastings sampler in the E-step. An analysis of monthly outpatient EPO medical cost data for dialysis patients is presented to illustrate the proposed methods.

摘要

在本文中,我们提出了一个针对按固定时间间隔(例如每月)记录的医疗费用的模型,将其作为存在终止事件(如死亡)时的重复测量。先前的模型将每月医疗费用与进入研究后的时间相关联,在死亡时的最终观察中会出现额外费用。我们用于每月医疗费用和生存时间的联合模型纳入了两个重要的新特征。首先,医疗费用和生存可能相关,因为更“虚弱”的患者往往医疗费用累积得更快且死亡更早。我们提出了一个联合随机效应模型,通过一个共享随机效应来解释医疗费用和生存之间的相关性。其次,由于对临终患者的重症护理,每月医疗费用通常在死亡前的时间段内会增加。我们提出了一种估计死亡前费用模式的方法,如果该模式可以被表征为一个仅限于固定时间间隔(例如死亡前b个时间单位)的加性效应,则该方法适用。这种针对删失观察值的“回溯时间”方法在实际删失时间前b个时间单位对费用数据进行删失,同时保留生存数据的实际删失时间。可以纳入随时间变化的协变量。通过在期望步骤中使用Metropolis-Hastings采样器的蒙特卡罗期望最大化(EM)算法进行最大似然估计和推断。给出了对透析患者每月门诊促红细胞生成素(EPO)医疗费用数据的分析,以说明所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验