Suppr超能文献

具有动态无序的一维输运

One-dimensional transport with dynamic disorder.

作者信息

Barsegov Valeri, Shapir Yonathan, Mukamel Shaul

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011101. doi: 10.1103/PhysRevE.68.011101. Epub 2003 Jul 11.

Abstract

We study the mean quenching time distribution and its moments in a one-dimensional N-site donor-bridge-acceptor system where all sites are coupled to a two-state jump bath for arbitrary disorder and an arbitrary ratio kappa identical with /R of the bath jump rate R and the average hopping rate . When kappaN approximately 1, the quenching time distribution has long power-law tails even when the waiting times are exponentially distributed. These disappear for kappaN<<1 where the hopping rate self-averages on the bath relaxation time scale. In the absence of disorder or for small kappa, the mean quenching time scales linearly with N. Otherwise, we observe a power law, approximately N1+gamma, with a crossover to linear scaling (gamma=0) for large N. Distributions of particle position, its second moment, velocity and diffusion coefficient are computed in the infinite N limit. For times longer than R-1, the dynamic disorder self-averages and the average position, velocity, and diffusion coefficient scale linearly in time.

摘要

我们研究了一维N个位点的供体-桥-受体系统中的平均猝灭时间分布及其矩,其中所有位点都与一个两态跳跃浴耦合,适用于任意无序情况以及浴跳跃率R与平均跳跃率的任意比率κ(κ = /R)。当κN约为1时,即使等待时间呈指数分布,猝灭时间分布也具有长幂律尾部。对于κN << 1的情况,这些尾部消失,此时跳跃率在浴弛豫时间尺度上实现自平均。在没有无序或κ较小时,平均猝灭时间与N呈线性比例关系。否则,我们观察到幂律关系,近似为N^(1 + γ),对于大N会交叉到线性比例关系(γ = 0)。在N趋于无穷大的极限情况下,计算了粒子位置分布、其二阶矩、速度和扩散系数。对于大于R^(-1)的时间,动态无序实现自平均,平均位置、速度和扩散系数随时间呈线性比例关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验