Suppr超能文献

利用运动规划来绘制蛋白质折叠景观并分析已知天然结构的折叠动力学。

Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures.

作者信息

Amato Nancy M, Dill Ken A, Song Guang

机构信息

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA.

出版信息

J Comput Biol. 2003;10(3-4):239-55. doi: 10.1089/10665270360688002.

Abstract

We investigate a novel approach for studying the kinetics of protein folding. Our framework has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs) that have been applied in many diverse fields with great success. In our previous work, we presented our PRM-based technique and obtained encouraging results studying protein folding pathways for several small proteins. In this paper, we describe how our motion planning framework can be used to study protein folding kinetics. In particular, we present a refined version of our PRM-based framework and describe how it can be used to produce potential energy landscapes, free energy landscapes, and many folding pathways all from a single roadmap which is computed in a few hours on a desktop PC. Results are presented for 14 proteins. Our ability to produce large sets of unrelated folding pathways may potentially provide crucial insight into some aspects of folding kinetics, such as proteins that exhibit both two-state and three-state kinetics that are not captured by other theoretical techniques.

摘要

我们研究了一种用于研究蛋白质折叠动力学的新方法。我们的框架源自被称为概率地图方法(PRMs)的机器人运动规划技术,该技术已在许多不同领域成功应用。在我们之前的工作中,我们展示了基于PRM的技术,并在研究几种小蛋白质的折叠途径方面取得了令人鼓舞的结果。在本文中,我们描述了如何使用我们的运动规划框架来研究蛋白质折叠动力学。特别是,我们展示了基于PRM框架的改进版本,并描述了如何使用它从单个路线图生成势能景观、自由能景观以及许多折叠途径,该路线图在台式计算机上只需几个小时即可计算出来。文中给出了14种蛋白质的结果。我们生成大量不相关折叠途径的能力可能会为折叠动力学的某些方面提供关键见解,比如那些展现出两态和三态动力学且未被其他理论技术所捕捉的蛋白质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验