Suppr超能文献

用贝叶斯计算探索蛋白质折叠模拟的能量景观。

Exploring the energy landscapes of protein folding simulations with Bayesian computation.

机构信息

Systems Biology Centre, University of Warwick, Coventry, United Kingdom.

出版信息

Biophys J. 2012 Feb 22;102(4):878-86. doi: 10.1016/j.bpj.2011.12.053. Epub 2012 Feb 21.

Abstract

Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used.

摘要

嵌套抽样是一种贝叶斯抽样技术,旨在探索参数空间中呈指数级小区域的概率分布。该算法提供了模型的后验样本和证据(边际似然)的估计。通过对输出进行简单的后处理,嵌套抽样算法还提供了一种在任何温度下计算自由能和热力学可观测量的期望值的有效方法。该算法的先前应用已经比其他抽样技术(包括并行温度)带来了很大的效率提升。在本文中,我们描述了嵌套抽样算法的并行实现及其在 Gō 类经验势力场中蛋白质折叠问题的应用,该势场旨在稳定室温模拟中的二级结构元件。我们通过对一些常用于测试蛋白质折叠程序的小蛋白质进行折叠模拟来演示该方法。对后验样本进行拓扑分析以生成能量景观图,为蛋白质折叠模拟的势能表面提供了高级描述。这些图表为折叠过程和使用的模型和力场的性质提供了定性的见解。

相似文献

1
Exploring the energy landscapes of protein folding simulations with Bayesian computation.
Biophys J. 2012 Feb 22;102(4):878-86. doi: 10.1016/j.bpj.2011.12.053. Epub 2012 Feb 21.
2
3
Folding thermodynamics of β-hairpins studied by replica-exchange molecular dynamics simulations.
Proteins. 2015 Jul;83(7):1307-15. doi: 10.1002/prot.24827. Epub 2015 May 29.
4
Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis.
Phys Chem Chem Phys. 2011 Oct 14;13(38):17064-76. doi: 10.1039/c1cp20156e. Epub 2011 Jul 19.
6
Computer simulations of protein folding by targeted molecular dynamics.
Proteins. 2000 May 15;39(3):252-60. doi: 10.1002/(sici)1097-0134(20000515)39:3<252::aid-prot80>3.0.co;2-3.
8
Free energy landscape of protein folding in water: explicit vs. implicit solvent.
Proteins. 2003 Nov 1;53(2):148-61. doi: 10.1002/prot.10483.
9
Thermodynamics of downhill folding: multi-probe analysis of PDD, a protein that folds over a marginal free energy barrier.
J Phys Chem B. 2014 Jul 31;118(30):8982-94. doi: 10.1021/jp504261g. Epub 2014 Jul 21.
10
Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics.
J Am Chem Soc. 2006 Oct 18;128(41):13435-41. doi: 10.1021/ja062463w.

引用本文的文献

1
SARS-CoV‑2 RNA's Dual Identity: G‑Quadruplex versus Hairpin.
ACS Omega. 2025 Jul 1;10(27):29408-29420. doi: 10.1021/acsomega.5c02568. eCollection 2025 Jul 15.
2
From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA.
NAR Genom Bioinform. 2024 Jun 4;6(2):lqae062. doi: 10.1093/nargab/lqae062. eCollection 2024 Jun.
3
Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
ACS Synth Biol. 2023 Sep 15;12(9):2600-2615. doi: 10.1021/acssynbio.3c00196. Epub 2023 Aug 29.
4
Intrinsically Disordered Proteins: Critical Components of the Wetware.
Chem Rev. 2022 Mar 23;122(6):6614-6633. doi: 10.1021/acs.chemrev.1c00848. Epub 2022 Feb 16.
5
Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm.
Entropy (Basel). 2020 Feb 6;22(2):185. doi: 10.3390/e22020185.
6
Likelihood-free nested sampling for parameter inference of biochemical reaction networks.
PLoS Comput Biol. 2020 Oct 9;16(10):e1008264. doi: 10.1371/journal.pcbi.1008264. eCollection 2020 Oct.
7
Targeting Tumors Using Peptides.
Molecules. 2020 Feb 13;25(4):808. doi: 10.3390/molecules25040808.
8
A Benchmark for Homomeric Enzyme Active Site Structure Prediction Highlights the Importance of Accurate Modeling of Protein Symmetry.
ACS Omega. 2019 Dec 19;4(27):22356-22362. doi: 10.1021/acsomega.9b02636. eCollection 2019 Dec 31.
9
Docking Flexible Cyclic Peptides with .
J Chem Theory Comput. 2019 Oct 8;15(10):5161-5168. doi: 10.1021/acs.jctc.9b00557. Epub 2019 Sep 17.
10
AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.
Bioinformatics. 2019 Dec 15;35(24):5121-5127. doi: 10.1093/bioinformatics/btz459.

本文引用的文献

1
Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses.
Phys Biol. 2012 Feb;9(1):016008. doi: 10.1088/1478-3975/9/1/016008. Epub 2012 Feb 7.
2
How fast-folding proteins fold.
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
3
Efficient sampling of atomic configurational spaces.
J Phys Chem B. 2010 Aug 19;114(32):10502-12. doi: 10.1021/jp1012973.
5
Folding energy landscape and network dynamics of small globular proteins.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):73-8. doi: 10.1073/pnas.0811560106. Epub 2008 Dec 29.
6
CRANKITE: A fast polypeptide backbone conformation sampler.
Source Code Biol Med. 2008 Jun 24;3:12. doi: 10.1186/1751-0473-3-12.
7
Dynamic personalities of proteins.
Nature. 2007 Dec 13;450(7172):964-72. doi: 10.1038/nature06522.
8
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
9
Learning about protein hydrogen bonding by minimizing contrastive divergence.
Proteins. 2007 Feb 15;66(3):588-99. doi: 10.1002/prot.21247.
10
Potential energy and free energy landscapes.
J Phys Chem B. 2006 Oct 26;110(42):20765-76. doi: 10.1021/jp0680544.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验