Suppr超能文献

利用图论和小分子扰动组合对生物网络进行化学基因组学分析。

Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations.

作者信息

Haggarty Stephen J, Clemons Paul A, Schreiber Stuart L

机构信息

Departments of Chemistry and Chemical Biology and of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard Institute of Chemistry & Cell Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.

出版信息

J Am Chem Soc. 2003 Sep 3;125(35):10543-5. doi: 10.1021/ja035413p.

Abstract

Genome-wide measurements of multiple experimental samples yield rich fingerprints for comparison and interpretation. Here, a two-dimensional matrix of the cellular effects of all possible pairwise combinations of 24 small molecules, each with a different structure and bioactivity, was used to profile otherwise isogenic deletion strains of the yeast Saccharomyces cerevisiae. Using principles from graph theory, we derived a discrete model of the data for each strain by encoding the information in the form of a binary adjacency matrix. This matrix was used to construct a graph composed of nodes representing small molecules and edges connecting combinations that inhibited cell cycle progression. Computation of a set of graph theoretic descriptors for each chemical genetic network provided a topological fingerprint that showed genotype-dependent fluctuations. Because the structure of the genetic network determines the structure of the chemical genetic network, multidimensional chemical genomic profiling can be used for the characterization of perturbations in biological networks or the networks themselves. This application of small molecules could be useful for discerning the molecular basis of highly complex biological phenotypes, including those involved in the susceptibility to or etiology of human disease.

摘要

对多个实验样本进行全基因组测量可产生丰富的指纹图谱用于比较和解读。在此,利用24种具有不同结构和生物活性的小分子的所有可能两两组合的细胞效应二维矩阵,对酿酒酵母的同基因缺失菌株进行了分析。运用图论原理,我们通过将信息编码为二元邻接矩阵的形式,为每个菌株推导了一个离散数据模型。该矩阵用于构建一个由代表小分子的节点和连接抑制细胞周期进程组合的边组成的图。为每个化学遗传网络计算一组图论描述符,提供了一个显示基因型依赖性波动的拓扑指纹图谱。由于遗传网络的结构决定了化学遗传网络的结构,多维化学基因组分析可用于表征生物网络或网络本身中的扰动。小分子的这种应用可能有助于识别高度复杂生物表型的分子基础,包括那些与人类疾病易感性或病因相关的表型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验