Hrabetová Sabina, Hrabe Jan, Nicholson Charles
Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
J Neurosci. 2003 Sep 10;23(23):8351-9. doi: 10.1523/JNEUROSCI.23-23-08351.2003.
During ischemia, the transport of molecules in the extracellular space (ECS) is obstructed in comparison with healthy brain tissue, but the cause is unknown. Extracellular tortuosity (lambda), normally 1.6, increases to 1.9 in ischemic thick brain slices (1000 microm), but drops to 1.5 when 70,000 Mr dextran (dex70) is added to the tissue as a background macromolecule. We hypothesized that the ischemic increase in lambda arises from diffusion delays in newly formed dead-space microdomains of the ECS. Accordingly, lambda decreases when dead-space diffusion is eliminated by trapping dex70 in these microdomains. We tested our hypothesis by analyzing the diffusion of several molecules in neocortical slices. First we showed that diffusion of fluorescent dex70 in thick slices declined over time, indicating the entrapment of background macromolecules. Next, we measured diffusion of tetramethylammonium (TMA+) (74 Mr) to show that the reduction of lambda depended on the size of the background macromolecule. The synthetic polymer, 40,000 Mr polyvinylpyrrolidone, reduced lambda in thick slices, whereas 10,000 Mr dextran did not. The dex70 was also effective in normoxic slices (400 microm) after hypoosmotic stress altered the ECS to mimic ischemia. Finally, the dex70 effect was confirmed independently of TMA+ using fluorescent 3000 Mr dextran as a diffusion marker in thick slices: lambda decreased from 3.29 to 2.44. Taken together, these data support our hypothesis and offer a novel explanation for the origin of the large lambda observed in ischemic brain. A semiquantitative model of dead-space diffusion corroborates this new interpretation of lambda.
在缺血期间,与健康脑组织相比,细胞外空间(ECS)中的分子运输受到阻碍,但其原因尚不清楚。细胞外曲折度(λ)通常为1.6,在缺血的厚脑片(1000微米)中增加到1.9,但当将70,000道尔顿的葡聚糖(dex70)作为背景大分子添加到组织中时,λ降至1.5。我们假设,λ在缺血时的增加源于ECS新形成的死腔微区中的扩散延迟。因此,当通过将dex70捕获在这些微区中来消除死腔扩散时,λ会降低。我们通过分析新皮质切片中几种分子的扩散来检验我们的假设。首先,我们表明荧光dex70在厚切片中的扩散随时间下降,表明背景大分子被截留。接下来,我们测量了四甲基铵(TMA+)(74道尔顿)的扩散,以表明λ的降低取决于背景大分子的大小。合成聚合物聚维酮(40,000道尔顿)可降低厚切片中的λ,而10,000道尔顿的葡聚糖则不能。在低渗应激改变ECS以模拟缺血后,dex70在常氧切片(400微米)中也有效。最后,在厚切片中使用荧光3000道尔顿的葡聚糖作为扩散标记物,独立于TMA+证实了dex70的作用:λ从3.29降至2.44。综上所述,这些数据支持了我们的假设,并为在缺血脑中观察到的大λ的起源提供了一种新的解释。死腔扩散的半定量模型证实了对λ的这种新解释。