Voigt Philipp, Knapp Ernst-Walter
Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry, Free University of Berlin, Takustrasse 6, Berlin D-14195, Germany.
J Biol Chem. 2003 Dec 26;278(52):51993-2001. doi: 10.1074/jbc.M307560200. Epub 2003 Sep 15.
The photosynthetic reaction center (RC) from Rhodopseudomonas viridis contains four cytochrome c hemes. They establish the initial part of the electron transfer (ET) chain through the RC. Despite their chemical identity, their midpoint potentials cover an interval of 440 mV. The individual heme midpoint potentials determine the ET kinetics and are therefore tuned by specific interactions with the protein environment. Here, we use an electrostatic approach based on the solution of the linearized Poisson-Boltzmann equation to evaluate the determinants of individual heme redox potentials. Our calculated redox potentials agree within 25 meV with the experimentally measured values. The heme redox potentials are mainly governed by solvent accessibility of the hemes and propionic acids, by neutralization of the negative charges at the propionates through either protonation or formation of salt bridges, by interactions with other hemes, and to a lesser extent, with other titratable protein side chains. In contrast to earlier computations on this system, we used quantum chemically derived atomic charges, considered an equilibrium-distributed protonation pattern, and accounted for interdependencies of site-site interactions. We provide values for the working potentials of all hemes as a function of the solution redox potential, which are crucial for calculations of ET rates. We identify residues whose site-directed mutation might significantly influence ET processes in the cytochrome c part of the RC. Redox potentials measured on a previously generated mutant could be reproduced by calculations based on a model structure of the mutant generated from the wild type RC.
来自绿硫红假单胞菌的光合反应中心(RC)含有四个细胞色素c血红素。它们通过反应中心建立了电子转移(ET)链的起始部分。尽管它们的化学性质相同,但其中点电位覆盖了440 mV的区间。各个血红素的中点电位决定了电子转移动力学,因此通过与蛋白质环境的特定相互作用进行调节。在这里,我们使用基于线性化泊松-玻尔兹曼方程解的静电方法来评估各个血红素氧化还原电位的决定因素。我们计算的氧化还原电位与实验测量值在25 meV范围内相符。血红素氧化还原电位主要受血红素和丙酸的溶剂可及性、通过质子化或形成盐桥对丙酸酯上负电荷的中和、与其他血红素的相互作用以及在较小程度上与其他可滴定蛋白质侧链的相互作用的控制。与该系统早期的计算不同,我们使用了量子化学推导的原子电荷,考虑了平衡分布的质子化模式,并考虑了位点-位点相互作用的相互依赖性。我们提供了所有血红素的工作电位随溶液氧化还原电位变化的函数值,这对于电子转移速率的计算至关重要。我们确定了其定点突变可能显著影响反应中心细胞色素c部分电子转移过程的残基。基于从野生型反应中心生成的突变体模型结构进行的计算,可以重现先前产生的突变体上测量的氧化还原电位。