Suppr超能文献

大肠杆菌 ClC 型氯离子-质子反向转运体的电荷传递。

Charge transport in the ClC-type chloride-proton anti-porter from Escherichia coli.

机构信息

Freie Universität Berlin, Institut für Chemie, Fabeckstrasse 36a, D-14195 Berlin, Germany.

出版信息

J Biol Chem. 2011 Jan 28;286(4):2976-86. doi: 10.1074/jbc.M110.163246. Epub 2010 Nov 8.

Abstract

The first chloride transporter identified in the superfamily of ClC chloride channels was from Escherichia coli (EClC) (Accardi, A., and Miller, C. (2004) Nature 427, 803-807). Pathways, energetics, and mechanism of proton and chloride translocation and their coupling are up to now unclear. To bridge the hydrophobic gap of proton transport, we modeled four stable buried waters into both subunits of the WT EClC structure. Together they form a "water wire" connecting Glu-203 with the chloride at the central site, which in turn connects to Glu-148, the hypothetical proton exit site. Assuming the transient production of hydrochloride in the central chloride binding site of EClC, the water wire could establish a transmembrane proton transport pathway starting from Glu-203 all the way downstream onto Glu-148. We demonstrated by electrostatic and quantum chemical computations that protonation of the central chloride is energetically feasible. We characterized all chloride occupancies and protonation states possibly relevant for the proton-chloride transport cycle in EClC and constructed a working model. Accordingly, EClC evolves through states involving up to two excess protons and between one and three chlorides, which was required to fulfill the experimentally observed 2:1 stoichiometry. We show that the Y445F and E203H mutants of EClC can operate similarly, thus explaining why they exhibit almost WT activity levels. The proposed mechanism of coupled chloride-proton transport in EClC is consistent with available experimental data and allows predictions on the importance of specific amino acids, which may be probed by mutation experiments.

摘要

氯离子转运蛋白超家族中首次被鉴定的氯离子转运蛋白来自大肠杆菌(EClC)(Accardi,A. 和 Miller,C.(2004)Nature 427,803-807)。质子和氯离子的转运途径、能量学和机制及其偶联至今仍不清楚。为了弥合质子转运的疏水区隙,我们将四个稳定的埋藏水模拟到 WT EClC 结构的两个亚基中。它们共同形成了一条“水线”,将 Glu-203 与中央位点的氯离子连接起来,氯离子又与 Glu-148 连接,后者是假设的质子出口位点。假设在 EClC 的中央氯离子结合位点瞬时产生盐酸盐,水线可以建立一个从 Glu-203 开始的跨膜质子转运途径,一直延伸到 Glu-148。我们通过静电和量子化学计算证明了中央氯离子的质子化在能量上是可行的。我们描述了在 EClC 中与质子-氯离子转运循环相关的所有氯离子占据和质子化状态,并构建了一个工作模型。因此,EClC 通过涉及多达两个过剩质子和一个到三个氯离子的状态进化,这是满足实验观察到的 2:1 化学计量所必需的。我们表明,EClC 的 Y445F 和 E203H 突变体可以类似地运作,因此解释了为什么它们表现出几乎 WT 的活性水平。所提出的 EClC 中氯离子-质子偶联转运机制与现有实验数据一致,并允许对特定氨基酸的重要性进行预测,这些氨基酸可以通过突变实验进行探测。

相似文献

3
Water access points and hydration pathways in CLC H+/Cl- transporters.CLC H+/Cl− 转运体中的水通道和水合途径。
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.
9
Design, function and structure of a monomeric ClC transporter.单体 ClC 转运蛋白的设计、功能和结构。
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.

引用本文的文献

7
Water access points and hydration pathways in CLC H+/Cl- transporters.CLC H+/Cl− 转运体中的水通道和水合途径。
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.

本文引用的文献

2
Design, function and structure of a monomeric ClC transporter.单体 ClC 转运蛋白的设计、功能和结构。
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验