Ishii Y, Hitchcock-DeGregori S, Mabuchi K, Lehrer S S
Department of Muscle Research, Boston Biomedical Research Institute, Massachusetts 02114.
Protein Sci. 1992 Oct;1(10):1319-25. doi: 10.1002/pro.5560011011.
The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more than 36% of the helix from the C-terminus; (3) a major transition at 56 degrees C involving about 46% of the helix from the N-terminus; and (4) a transition from the nonhelical fusion domain at about 70 degrees C. Rabbit skeletal muscle tropomyosin, which lacks the fusion peptide but has the same tropomyosin sequence, does not exhibit the 56 degrees C or 70 degrees C transition. The very stable fusion unfolding domain of fusion-tropomyosin, which appears in electron micrographs as a globular structural domain at one end of the tropomyosin rod, acts as a cross-link to stabilize the adjacent N-terminal domain. The least stable middle of the molecule, when unfolded, acts as a boundary to allow the independent unfolding of the C-terminal domain at 46 degrees C from the stabilized N-terminal unfolding domain at 56 degrees C. Thus, strong localized interchain interactions in coiled-coil molecules can increase the stability of neighboring domains.
利用圆二色性和荧光技术研究了来自大鼠横纹肌的重组αα-原肌球蛋白的卷曲螺旋α-螺旋的热解折叠过程,该重组αα-原肌球蛋白在N端含有流感病毒NS1蛋白的一个额外的80个残基的肽段(融合原肌球蛋白)。融合原肌球蛋白在四个协同转变中解折叠:(1)一个起始于35℃的预转变,涉及分子中部;(2)一个在46℃的主要转变,涉及不超过C端36%的螺旋;(3)一个在56℃的主要转变,涉及N端约46%的螺旋;以及(4)一个在约70℃从非螺旋融合结构域的转变。兔骨骼肌原肌球蛋白缺乏融合肽但具有相同的原肌球蛋白序列,不表现出56℃或70℃的转变。融合原肌球蛋白非常稳定的融合解折叠结构域,在电子显微镜下表现为原肌球蛋白杆一端的球状结构域,起到交联作用以稳定相邻的N端结构域。分子最不稳定的中部解折叠时,作为一个边界,允许C端结构域在46℃从在56℃稳定的N端解折叠结构域独立解折叠。因此,卷曲螺旋分子中强烈的局部链间相互作用可增加相邻结构域的稳定性。