Gerken T A, Gupta R, Jentoft N
W. A. Bernbaum Center for Cystic Fibrosis Research, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106.
Biochemistry. 1992 Jan 28;31(3):639-48. doi: 10.1021/bi00118a002.
A new approach for removing O-glycosidically linked carbohydrate side chains from glycoproteins is described. Periodate oxidation of the C3 and C4 carbons in peptide-linked N-acetylgalactosamine (GalNAc) residues generates a dialdehyde product which, under mild alkaline conditions, undergoes a beta-elimination which releases carbohydrate and leaves an intact peptide core. The pH and time dependence, and intermediates of the elimination, have been extensively followed by carbon-13 NMR spectroscopy and amino acid analysis using ovine submaxillary mucin (OSM) as the substrate. The deglycosylation of OSM is complete and provides apomucin in high yield with an amino acid composition identical to the starting material. Carboxymethylated OSM when deglycosylated by this method gives an apomucin with an apparent molecular weight of ca. 700 x 10(3). The molecular weight is the same as that calculated for the peptide core of the starting mucin, demonstrating the absence of peptide core cleavage. This contrasts with the use of trifluoromethanesulfonic acid (TFMSA), which generates apomucin products of lower molecular weights. Oligosaccharide side chains substituted at C3 of the peptide-linked GalNAc residue are resistant to the oxidation and elimination. Glycoproteins containing these more complex side chains can be deglycosylated by pretreatment with TFMSA under mild (0 degree C) conditions, which removes peripheral sugars (while leaving the peptide-linked GalNAc residue intact), followed by oxidation and beta-elimination. Studies on the deglycosylation of porcine submaxillary mucin and human tracheobronchial mucin indicate that this approach provides more efficient removal of carbohydrate and less peptide core degradation than a more vigorous (25 degrees C) treatment with TFMSA alone. 13C NMR spectroscopic studies and carbohydrate analysis of the deglycosylation intermediates of the human mucin indicate that certain sialic acid containing and N-acetylglucosamine-containing oligosaccharides have elevated resistance to TFMSA treatment at 0 degrees C. By the use of neuraminidase, repeated mild TFMSA treatments, and multiple oxidations and beta-eliminations, the human mucin can be nearly completely deglycosylated. It is expected that all mucins and most glycoproteins containing O-glycosidic linkages can be readily and nearly completely deglycosylated using this combined approach.
本文描述了一种从糖蛋白中去除O-糖苷键连接的碳水化合物侧链的新方法。肽连接的N-乙酰半乳糖胺(GalNAc)残基中C3和C4碳的高碘酸盐氧化生成二醛产物,在温和碱性条件下,该产物会发生β-消除反应,释放出碳水化合物并留下完整的肽核心。以羊颌下粘蛋白(OSM)为底物,通过碳-13核磁共振光谱和氨基酸分析对消除反应的pH和时间依赖性以及中间体进行了广泛的跟踪研究。OSM的去糖基化反应完全,以高收率得到脱辅基粘蛋白,其氨基酸组成与起始原料相同。当通过该方法对羧甲基化的OSM进行去糖基化时,得到的脱辅基粘蛋白的表观分子量约为700×10³。该分子量与起始粘蛋白肽核心的计算分子量相同,表明不存在肽核心裂解。这与使用三氟甲磺酸(TFMSA)的情况形成对比,后者会生成分子量较低的脱辅基粘蛋白产物。在肽连接的GalNAc残基的C3位被取代的寡糖侧链对氧化和消除反应具有抗性。含有这些更复杂侧链的糖蛋白可以通过在温和(0℃)条件下用TFMSA预处理进行去糖基化,该预处理会去除外围糖(同时使肽连接的GalNAc残基保持完整),然后进行氧化和β-消除反应。对猪颌下粘蛋白和人气管支气管粘蛋白去糖基化的研究表明,与单独使用更剧烈(25℃)的TFMSA处理相比,该方法能更有效地去除碳水化合物且肽核心降解更少。对人粘蛋白去糖基化中间体的¹³C核磁共振光谱研究和碳水化合物分析表明,某些含唾液酸和含N-乙酰葡糖胺的寡糖在0℃下对TFMSA处理具有更高的抗性。通过使用神经氨酸酶、重复温和的TFMSA处理以及多次氧化和β-消除反应,人粘蛋白几乎可以完全去糖基化。预计使用这种联合方法可以轻松且几乎完全地对所有粘蛋白和大多数含有O-糖苷键的糖蛋白进行去糖基化。