Suppr超能文献

Electron-transfer-induced acidity/basicity and reactivity changes of purine and pyrimidine bases. Consequences of redox processes for DNA base pairs.

作者信息

Steenken S

机构信息

Max-Planck-Institut für Strahlenchemie, Mülheim, Germany.

出版信息

Free Radic Res Commun. 1992;16(6):349-79. doi: 10.3109/10715769209049187.

Abstract

Changes in the oxidation state of the DNA bases, induced by oxidation (ionization) or by reduction (electron capture), have drastic effects on the acidity or basicity, respectively, of the molecules. Since in DNA every base is connected to its complementary base in the other strand, any change of the electric charge status of a base in one DNA strand that accompanies its oxidation or reduction may affect also the other strand via proton transfer across the hydrogen bonds in the base pairs. The free energies for electron transfer to or from a base can be drastically altered by the proton transfer processes that accompany the electron transfer reactions. Electron-transfer (ET) induced proton transfer sensitizes the base opposite to the ET-damaged base to redox damage, i.e., damage produced by separation of charge (ionization) has an increased change of being trapped in a base pair. Of the two types of base pair in DNA, A-T and C-G, the latter is more sensitive to both oxidative and reductive processes than the former. Proton transfer induced by ET does not only occur between the heteroatoms (O and N) of the base pairs (intra-pair proton transfer), but also to and from adjacent water molecules in the hydration shell of DNA (extra-pair proton transfer). These proton transfers can involve carbon and as such are likely to be irreversible. It is the A-T pair which appears to be particularly prone to such irreversible reactions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验