Suppr超能文献

在光系统II的锰耗尽核心复合物中,氧化还原活性酪氨酸Y(Z)氧化还原过程中的氢键、溶剂交换以及质子和电子的耦合转移

Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.

作者信息

Diner B A, Force D A, Randall D W, Britt R D

机构信息

Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173, USA.

出版信息

Biochemistry. 1998 Dec 22;37(51):17931-43. doi: 10.1021/bi981894r.

Abstract

The redox-active tyrosines, Y(Z) and Y(D), of Photosystem II are oxidized by P680+ to the neutral tyrosyl radical. This oxidation thus involves the transfer of the phenolic proton as well as an electron. It has recently been proposed that tyrosine Y(Z) might replace the lost proton by abstraction of a hydrogen atom or a proton from a water molecule bound to the manganese cluster, thereby increasing the driving force for water oxidation. To compare and contrast with the intact system, we examine here, in a simplified Mn-depleted PSII core complex, isolated from a site-directed mutant of Synechocystis PCC 6803 lacking Y(D), the role of proton transfer in the oxidation and reduction of Y(Z). We show how the oxidation and reduction rates for Y(Z), the deuterium isotope effect on these rates, and the Y(Z)* - Y(Z) difference spectra all depend on pH (from 5.5 to 9.5). This simplified system allows examination of electron-transfer processes over a broader range of pH than is possible with the intact system and with more tractable rates. The kinetic isotope effect for the oxidation of P680+ by Y(Z) is maximal at pH 7.0 (3.64). It decreases to lower pH as charge recombination, which shows no deuterium isotope, starts to become competitive with Y(Z) oxidation. To higher pH, Y(Z) becomes increasingly deprotonated to form the tyrosinate, the oxidation of which at pH 9.5 becomes extremely rapid (1260 ms(-1)) and no longer limited by proton transfer. These observations point to a mechanism for the oxidation of Y(Z) in which the tyrosinate is the species from which the electron occurs even at lower pH. The kinetics of oxidation of Y(Z) show elements of rate limitation by both proton and electron transfer, with the former dominating at low pH and the latter at high pH. The proton-transfer limitation of Y(Z) oxidation at low pH is best explained by a gated mechanism in which Y(Z) and the acceptor of the phenolic proton need to form an electron/proton-transfer competent complex in competition with other hydrogen-bonding interactions that each have with neighboring residues. In contrast, the reduction of Y(Z)* appears not to be limited by proton transfer between pH 5.5 and 9.5. We also compare, in Mn-depleted Synechocystis PSII core complexes, Y(Z) and Y(D) with respect to solvent accessibility by detection of the deuterium isotope effect for Y(Z) oxidation and by 2H ESEEM measurement of hydrogen-bond exchange. Upon incubation of H2O-prepared PSII core complexes in D2O, the phenolic proton of Y(Z) is exchanged for a deuterium in less than 2 min as opposed to a t(1/2) of about 9 h for Y(D). In addition, we show that Y(D)* is coordinated by two hydrogen bonds. Y(Z)* shows more disordered hydrogen bonding, reflecting inhomogeneity at the site. With 2H ESEEM modulation comparable to that of Y(D), Y(Z) would appear to be coordinated by two hydrogen bonds in a significant fraction of the centers.

摘要

光系统II中具有氧化还原活性的酪氨酸Y(Z)和Y(D)被P680+氧化为中性酪氨酸自由基。因此,这种氧化涉及酚质子以及一个电子的转移。最近有人提出,酪氨酸Y(Z)可能通过从与锰簇结合的水分子中夺取一个氢原子或一个质子来取代失去的质子,从而增加水氧化的驱动力。为了与完整系统进行比较和对比,我们在此研究了从缺乏Y(D)的集胞藻PCC 6803定点突变体中分离出的简化的贫锰PSII核心复合物中,质子转移在Y(Z)氧化和还原中的作用。我们展示了Y(Z)的氧化和还原速率、氘同位素对这些速率的影响以及Y(Z)* - Y(Z)差光谱如何都依赖于pH值(从5.5到9.5)。这个简化系统允许在比完整系统更宽的pH范围内研究电子转移过程,并且速率更易于处理。Y(Z)氧化P680+的动力学同位素效应在pH 7.0时最大(3.64)。随着电荷复合(其不显示氘同位素)开始与Y(Z)氧化竞争,它在较低pH值时降低。在较高pH值时,Y(Z)越来越多地去质子化形成酪氨酸盐,其在pH 9.5时的氧化变得极其迅速(1260 ms(-1)),并且不再受质子转移限制。这些观察结果指向一种Y(Z)氧化机制,其中即使在较低pH值下,酪氨酸盐也是电子产生的物种。Y(Z)氧化的动力学显示出质子和电子转移的速率限制因素,前者在低pH值时占主导,后者在高pH值时占主导。低pH值下Y(Z)氧化的质子转移限制最好用一种门控机制来解释,其中Y(Z)和酚质子的受体需要形成一个电子/质子转移能力的复合物,以与它们各自与相邻残基的其他氢键相互作用竞争。相比之下,在pH 5.5至9.5之间,Y(Z)*的还原似乎不受质子转移限制。我们还在贫锰的集胞藻PSII核心复合物中,通过检测Y(Z)氧化的氘同位素效应和通过2H ESEEM测量氢键交换,比较了Y(Z)和Y(D)在溶剂可及性方面的情况。将用H2O制备的PSII核心复合物在D2O中孵育时,Y(Z)的酚质子在不到2分钟内就被氘取代,而Y(D)的t(1/2)约为9小时。此外,我们表明Y(D)*由两个氢键配位。Y(Z)*显示出更无序的氢键,反映了该位点的不均匀性。由于2H ESEEM调制与Y(D)*相当,Y(Z)*在相当一部分中心似乎由两个氢键配位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验