Moss J, Osborne J C, Fishman P H, Brewer H B, Vaughan M, Brady R O
Proc Natl Acad Sci U S A. 1977 Jan;74(1):74-8. doi: 10.1073/pnas.74.1.74.
Choleragen and its A protomer catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide. NADase activity was inhibited by gangliosides GM1 (galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide), GM2 (N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide), GM3 (N-acetylneuraminyl-galactosylglucosylceramide), and GD1a (N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-E1N-acetylneuraminyl]-galactosylglucosylceramide). These gangliosides also increased the intensity of the tryptophanyl fluorescence of the isolated A protomer (lambda max = 328 nm). GM1 but not GM2, GM3, and GD1a caused a "blue shift" in the fluorescence spectrum of the B protomer. These results are consistent with other evidence that the specificity of GM1 as the choleragen receptor resides in its carbohydrate moiety. The NADase activity of choleragen was similar to that of diphtheria toxin previously described [J. Kandel, R. J. Collier & D. W. Chung (1974) J. Biol. Chem. 249, 2088-2097]. As with diphtheria toxin, analogues of NAD were inhibitory, adenine being the most effective. Significant inhibition was also noted with adenosine, AMP, ADP-ribose, nicotinamide, nicotinamide mononucleotide, and NADP. NADP was hydrolyzed only slowly by choleragen. In the NADase reaction catalyzed by diphtheria toxin, water serves as an acceptor for the ADP-ribose moiety of NAD in lieu of the natural acceptor molecule, which is elongation factor II (Kandel et al., 1974). It seems probable that the natural protein acceptor for ADP-ribose in the reaction catalyzed by choleragen is adenylate cyclase or a protein component of a cyclase complex that regulates enzymatic activity.
霍乱毒素及其A亚基催化NAD水解为ADP-核糖和烟酰胺。NAD酶活性受到神经节苷脂GM1(半乳糖基-N-乙酰半乳糖胺基-[N-乙酰神经氨酸基]-半乳糖基葡萄糖神经酰胺)、GM2(N-乙酰半乳糖胺基-[N-乙酰神经氨酸基]-半乳糖基葡萄糖神经酰胺)、GM3(N-乙酰神经氨酸基-半乳糖基葡萄糖神经酰胺)和GD1a(N-乙酰神经氨酸基半乳糖基-N-乙酰半乳糖胺基-[N-乙酰神经氨酸基]-半乳糖基葡萄糖神经酰胺)的抑制。这些神经节苷脂还增强了分离出的A亚基色氨酸荧光的强度(最大波长 = 328 nm)。GM1而非GM2、GM3和GD1a导致B亚基荧光光谱发生“蓝移”。这些结果与其他证据一致,即GM1作为霍乱毒素受体的特异性存在于其碳水化合物部分。霍乱毒素的NAD酶活性与先前描述的白喉毒素相似[J. 坎德尔、R. J. 科利尔和D. W. 钟(1974年)《生物化学杂志》249, 2088 - 2097]。与白喉毒素一样,NAD类似物具有抑制作用,腺嘌呤最为有效。腺苷、AMP、ADP-核糖、烟酰胺、烟酰胺单核苷酸和NADP也有显著抑制作用。霍乱毒素仅缓慢水解NADP。在白喉毒素催化的NAD酶反应中,水替代天然受体分子(延伸因子II)作为NAD的ADP-核糖部分的受体(坎德尔等人,1974年)。在霍乱毒素催化的反应中,ADP-核糖的天然蛋白质受体似乎是腺苷酸环化酶或调节酶活性的环化酶复合物的蛋白质成分。