Suppr超能文献

新生小鼠肾脏细胞分化的电子显微镜研究

Cellular differentiation in the kidneys of newborn mice studies with the electron microscope.

作者信息

CLARK S L

出版信息

J Biophys Biochem Cytol. 1957 May 25;3(3):349-62. doi: 10.1083/jcb.3.3.349.

Abstract

The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.

摘要

瑞士白化小鼠的肾脏结构在出生后的前两周内逐渐变化。细胞增殖形成新的肾单位,细胞通过获得特殊的膜成分进行分化,出生时存在的某些细胞学特征数量减少或消失。已使用光学显微镜和电子显微镜研究了皮质肾小管细胞的分化。肾小管在出生时部分且可变地分化。在出生后的前两周内,近端小管的刷状缘通过顶端细胞边缘大量微绒毛的积累而形成。近端和远端小管中的基底纹是线粒体排列形成的,这似乎是相邻有槽细胞逐渐连锁的结果。线粒体数量和大小增加,积累均匀的基质,并获得小的、非常致密的颗粒。集合管的基底细胞膜出现紧密褶皱,并且出现含有大量小细胞质囊泡和微绒毛的暗细胞。出生时,肾细胞中存在推测为脂质的致密不规则细胞质内含物,帕拉德细胞质颗粒丰富,近端小管细胞中有大的圆形体。脂质内含物在出生后几天消失,随着细胞分化,帕拉德细胞质颗粒数量减少。近端小管中的大圆形体由无定形物质组成,含有同心层状结构和线粒体。它们类似于成年大鼠和小鼠近端小管中通过给予蛋白质产生的细胞质滴。大圆形体在出生后第一周从幼鼠的近端小管中消失,但在成年小鼠中可能会发现同心层状结构。

相似文献

1
Cellular differentiation in the kidneys of newborn mice studies with the electron microscope.
J Biophys Biochem Cytol. 1957 May 25;3(3):349-62. doi: 10.1083/jcb.3.3.349.
2
The fine structure of the gall bladder epithelium of the mouse.
J Biophys Biochem Cytol. 1955 Sep 25;1(5):445-58. doi: 10.1083/jcb.1.5.445.
4
Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney.
J Biophys Biochem Cytol. 1960 Dec;8(3):689-718. doi: 10.1083/jcb.8.3.689.
6
Anatomy and fine structure of the alimentary canal of the spittlebug Lepyronia coleopterata (L.) (Hemiptera: Cercopoidea).
Arthropod Struct Dev. 2013 Nov;42(6):521-530. doi: 10.1016/j.asd.2013.04.005. Epub 2013 May 21.
7
NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2018 Feb 1;314(2):F154-F166. doi: 10.1152/ajprenal.00363.2017. Epub 2017 Oct 4.
9
The fine structure of brown adipose tissue in the newborn mouse and rat.
J Biophys Biochem Cytol. 1958 Nov 25;4(6):685-92. doi: 10.1083/jcb.4.6.685.

引用本文的文献

1
Mitochondrial Proteases and Their Roles in Mitophagy in Plants, Animals, and Yeast.
Plant Cell Physiol. 2025 Apr 23. doi: 10.1093/pcp/pcaf038.
2
Postnatal Development of the Mammalian Kidney.
J Am Soc Nephrol. 2025 May 1;36(5):755-757. doi: 10.1681/ASN.0000000695. Epub 2025 Apr 1.
3
A New Insight on Atherosclerosis Mechanism and Lipid-Lowering Drugs.
Rev Cardiovasc Med. 2025 Mar 5;26(3):25321. doi: 10.31083/RCM25321. eCollection 2025 Mar.
5
A narrative review of autophagy in migraine.
Front Neurosci. 2025 Feb 14;19:1500189. doi: 10.3389/fnins.2025.1500189. eCollection 2025.
6
Molecular mechanisms of autophagy and implications in liver diseases.
Liver Res. 2023 Feb 19;7(1):56-70. doi: 10.1016/j.livres.2023.02.002. eCollection 2023 Mar.
7
Oxidative Stress and Autophagy: Unraveling the Hidden Threat to Boars' Fertility.
Antioxidants (Basel). 2024 Dec 24;14(1):2. doi: 10.3390/antiox14010002.
8
Exploring paraptosis as a therapeutic approach in cancer treatment.
J Biomed Sci. 2024 Nov 4;31(1):101. doi: 10.1186/s12929-024-01089-4.
9
Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge.
Biomedicines. 2024 Jul 11;12(7):1546. doi: 10.3390/biomedicines12071546.
10
Unraveling the ultrastructure and dynamics of autophagic vesicles: Insights from advanced imaging techniques.
FASEB Bioadv. 2024 May 2;6(7):189-199. doi: 10.1096/fba.2024-00035. eCollection 2024 Jul.

本文引用的文献

4
Electron microscopy of the tubular cells of the kidney cortex.
Anat Rec. 1955 Apr;121(4):723-43. doi: 10.1002/ar.1091210403.
5
Electron microscopy of the vascular bed of the kidney cortex.
Anat Rec. 1955 Apr;121(4):701-21. doi: 10.1002/ar.1091210402.
7
A small particulate component of the cytoplasm.
J Biophys Biochem Cytol. 1955 Jan;1(1):59-68. doi: 10.1083/jcb.1.1.59.
8
Maturation of renal function in infant rats.
Am J Physiol. 1955 Apr;181(1):157-70. doi: 10.1152/ajplegacy.1955.181.1.157.
9
Electron microscopic observations of the central nervous system.
J Biophys Biochem Cytol. 1956 Sep 25;2(5):531-42. doi: 10.1083/jcb.2.5.531.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验