Suppr超能文献

美西螈幼虫再生肢体中胚基细胞和分化软骨细胞的精细结构。

The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae.

作者信息

HAY E D

出版信息

J Biophys Biochem Cytol. 1958 Sep 25;4(5):583-91. doi: 10.1083/jcb.4.5.583.

Abstract

Regenerating forelimbs of larval salamanders, Amblystoma punctatum, were fixed in OsO(4) at various intervals after amputation and were sectioned for study with the electron microscope. The dedifferentiated cells comprising the early blastema were found to have a fine structure similar to that of other undifferentiated cells and to have lost all of the identifying morphological features of their tissues of origin. The cytoplasm of such cells is characterized by numerous free ribonucleoprotein granules and a discontinuous vesicular endoplasmic reticulum. The cells have more abundant cytoplasm and are in closer contact with each other than was previously realized. The layer of condensed ground substance investing most differentiated cell types is lacking. After a period of rapid cell division, the morphology of the blastema cell changes. Cytoplasm is now sparse and contains a high concentration of free ribonucleoprotein granules, but little endoplasmic reticulum. The differentiating cartilage cell, however, develops an extensive, highly organized endoplasmic reticulum and the Golgi apparatus also appears to become more highly differentiated and more extensive at this time. Small vesicles appear throughout the cytoplasm at the time the new cisternae originate and may contribute to their formation. These and other changes in the cytoplasmic organelles are discussed.

摘要

对有斑点钝口螈幼体再生的前肢在截肢后的不同时间间隔用四氧化锇固定,并进行切片以供电子显微镜研究。发现构成早期芽基的去分化细胞具有与其他未分化细胞相似的精细结构,并且已经失去了其起源组织的所有识别形态特征。这类细胞的细胞质以大量游离核糖核蛋白颗粒和不连续的泡状内质网为特征。这些细胞具有更丰富的细胞质,并且彼此之间的接触比以前认识到的更为紧密。覆盖大多数分化细胞类型的致密基质层不存在。经过一段时间的快速细胞分裂后,芽基细胞的形态发生变化。此时细胞质稀疏,含有高浓度的游离核糖核蛋白颗粒,但内质网很少。然而,正在分化的软骨细胞会形成广泛、高度有组织的内质网,并且高尔基体此时似乎也变得更加高度分化和广泛。在新的池形成时,小泡出现在整个细胞质中,可能有助于它们的形成。本文讨论了细胞质细胞器的这些以及其他变化。

相似文献

3
Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae.
J Exp Zool. 1959 Feb;140:101-23. doi: 10.1002/jez.1401400106.
4
The development of the cnidoblasts of Hydra; an electron microscope study of cell differentiation.
J Biophys Biochem Cytol. 1959 May 25;5(3):441-52. doi: 10.1083/jcb.5.3.441.
6
Blastema formation in sparsely innervated and aneurogenic forelimbs of amblystoma larvae.
J Exp Zool. 1959 Oct-Dec;142:423-39. doi: 10.1002/jez.1401420119.
7
An electron microscope study of the salamander thyroid during hormonal stimulation.
J Biophys Biochem Cytol. 1960 Feb;7(1):143-50. doi: 10.1083/jcb.7.1.143.
10
Influence of an eccentric epidermal cap on limb regeneration in Amblystoma larvae.
Dev Biol. 1960 Dec;2:551-69. doi: 10.1016/0012-1606(60)90054-3.

引用本文的文献

1
Carcinosarcoma of the Endometrium-Pathology, Molecular Landscape and Novel Therapeutic Approaches.
Medicina (Kaunas). 2025 Jun 26;61(7):1156. doi: 10.3390/medicina61071156.
2
Lack of basic rationale in epithelial-mesenchymal transition and its related concepts.
Cell Biosci. 2024 Aug 20;14(1):104. doi: 10.1186/s13578-024-01282-w.
3
Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities.
MedComm (2020). 2022 May 18;3(2):e144. doi: 10.1002/mco2.144. eCollection 2022 Jun.
4
Appendage regeneration is context dependent at the cellular level.
Open Biol. 2021 Jul;11(7):210126. doi: 10.1098/rsob.210126. Epub 2021 Jul 28.
5
Epithelial to Mesenchymal Transition History: From Embryonic Development to Cancers.
Biomolecules. 2021 May 22;11(6):782. doi: 10.3390/biom11060782.
6
Mechanisms of urodele limb regeneration.
Regeneration (Oxf). 2017 Dec 26;4(4):159-200. doi: 10.1002/reg2.92. eCollection 2017 Aug.
8
[Autoradiographic investigations on protein metabolism during limb regeneration in urodeles].
Wilhelm Roux Arch Entwickl Mech Org. 1968 Mar;161(1):49-88. doi: 10.1007/BF00575216.
10
Use of an in vitro model in tissue engineering to study wound repair and differentiation of blastema tissue from rabbit pinna.
In Vitro Cell Dev Biol Anim. 2015 Aug;51(7):680-9. doi: 10.1007/s11626-015-9868-0. Epub 2015 Jun 20.

本文引用的文献

1
A study of fixation for electron microscopy.
J Exp Med. 1952 Mar;95(3):285-98. doi: 10.1084/jem.95.3.285.
2
A small particulate component of the cytoplasm.
J Biophys Biochem Cytol. 1955 Jan;1(1):59-68. doi: 10.1083/jcb.1.1.59.
3
4
Electron microscopy on the basophilic structures of the sea urchin egg.
Z Zellforsch Mikrosk Anat. 1957;45(6):660-75. doi: 10.1007/BF00338710.
5
Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell.
J Biophys Biochem Cytol. 1957 May 25;3(3):463-88. doi: 10.1083/jcb.3.3.463.
6
Cellular differentiation in the kidneys of newborn mice studies with the electron microscope.
J Biophys Biochem Cytol. 1957 May 25;3(3):349-62. doi: 10.1083/jcb.3.3.349.
7
Electron microscope study of the vitelline body of some spider oocytes.
J Biophys Biochem Cytol. 1957 Mar 25;3(2):301-10. doi: 10.1083/jcb.3.2.301.
9
Electron microscopy of the epiphyseal apparatus.
Anat Rec. 1956 Dec;126(4):465-95. doi: 10.1002/ar.1091260405.
10
A possible mechanism for the morphogenesis of lamellar systems in plant cells.
J Biophys Biochem Cytol. 1956 Sep 25;2(5):597-608. doi: 10.1083/jcb.2.5.597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验