Suppr超能文献

乌贼巨大轴突膜离子电流的测量。

Ionic current measurements in the squid giant axon membrane.

作者信息

COLE K S, MOORE J W

出版信息

J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.

Abstract

The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.(2), the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them.

摘要

乌贼轴突膜电位阶跃变化后离子电流测量的概念、实验及解释,要求在测量持续时间和膜面积内电位保持恒定。已开发出一种实现这一理想状态的实验方法。静电计、运算放大器和控制放大器能在40微秒内产生内部微电极与外部电位电极之间的阶跃电位,幅度为几毫伏。当内部电流电极有效电阻为2欧姆·厘米²时,膜电位和电流在几毫伏范围内且在靠近电极末端处变化10%以内时可保持恒定。当电位变化得到充分控制时,最佳轴突的最大膜电流模式比上述情况大几倍,但仍属于科尔所描述且由霍奇金和赫胥黎分析过的类型。偶尔出现的明显失真归因于根据电流电极和轴突的特性预期电位控制存在一定不足。预期改进只会提高稳定性和准确性。没有理由质疑早期测量的定性特征,也没有理由诋毁基于这些测量所做的分析。

相似文献

1
Ionic current measurements in the squid giant axon membrane.
J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.
2
Analysis of certain errors in squid axon voltage clamp measurements.
Biophys J. 1960 Nov;1(2):161-202. doi: 10.1016/s0006-3495(60)86882-8.
3
An analysis of the membrane potential along a clamped squid axon.
Biophys J. 1961 May;1(5):401-18. doi: 10.1016/s0006-3495(61)86898-7.
4
EFFECT OF ETHANOL ON THE SODIUM AND POTASSIUM CONDUCTANCES OF THE SQUID AXON MEMBRANE.
J Gen Physiol. 1964 Nov;48(2):279-95. doi: 10.1085/jgp.48.2.279.
5
Potassium ion current in the squid giant axon: dynamic characteristic.
Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.
6
A NEW INTERPRETATION OF THE DYNAMIC CHANGES OF THE POTASSIUM CONDUCTANCE IN THE SQUID GIANT AXON.
Biophys J. 1965 Mar;5(2):163-71. doi: 10.1016/s0006-3495(65)86708-x.
7
Liquid junction and membrane potentials of the squid giant axon.
J Gen Physiol. 1960 May;43(5):971-80. doi: 10.1085/jgp.43.5.971.
8
Theoretical stability properties of a space-clamped axon.
Biophys J. 1962 Mar;2(2 Pt 1):105-27. doi: 10.1016/s0006-3495(62)86844-1.

引用本文的文献

1
Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics.
Entropy (Basel). 2021 Jan 30;23(2):172. doi: 10.3390/e23020172.
2
Xolotl: An Intuitive and Approachable Neuron and Network Simulator for Research and Teaching.
Front Neuroinform. 2018 Nov 26;12:87. doi: 10.3389/fninf.2018.00087. eCollection 2018.
3
Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations.
Front Physiol. 2018 Nov 21;9:1406. doi: 10.3389/fphys.2018.01406. eCollection 2018.
4
Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology.
Front Physiol. 2018 Feb 15;9:106. doi: 10.3389/fphys.2018.00106. eCollection 2018.
5
The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.
J Gen Physiol. 2017 Feb;149(2):249-260. doi: 10.1085/jgp.201611701. Epub 2017 Jan 25.
7
8
Inhibition of the activation pathway of the T-type calcium channel Ca(V)3.1 by ProTxII.
Toxicon. 2010 Sep 15;56(4):624-36. doi: 10.1016/j.toxicon.2010.06.009. Epub 2010 Jun 23.
10
The threshold conditions for initiation of action potentials by excitable cells.
J Physiol. 1966 Nov;187(1):129-62. doi: 10.1113/jphysiol.1966.sp008079.

本文引用的文献

1
The normal membrane potential of frog sartorius fibers.
J Cell Comp Physiol. 1949 Dec;34(3):383-96. doi: 10.1002/jcp.1030340304.
2
Studies on the axon membrane; a new method.
J Cell Comp Physiol. 1949 Dec;34(3):351-82. doi: 10.1002/jcp.1030340303.
3
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
4
Measurement of current-voltage relations in the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):424-48. doi: 10.1113/jphysiol.1952.sp004716.
5
Resting and action potentials of the squid giant axon in vivo.
J Gen Physiol. 1960 May;43(5):961-70. doi: 10.1085/jgp.43.5.961.
6
Ion movements during nerve activity.
Ann N Y Acad Sci. 1959 Aug 28;81:221-46. doi: 10.1111/j.1749-6632.1959.tb49311.x.
7
On increasing the velocity of a nerve impulse.
J Physiol. 1959 Oct;148(3):665-70. doi: 10.1113/jphysiol.1959.sp006315.
8
Liquid junction and membrane potentials of the squid giant axon.
J Gen Physiol. 1960 May;43(5):971-80. doi: 10.1085/jgp.43.5.971.
9
Effect of procaine on electrical properties of squid axon membrane.
Am J Physiol. 1959 May;196(5):1071-8. doi: 10.1152/ajplegacy.1959.196.5.1071.
10
Excitation of the squid axon membrane in isosmotic potassium chloride.
Nature. 1959 Jan 24;183(4656):265-6. doi: 10.1038/183265b0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验