Suppr超能文献

乌贼轴突内钠浓度及净通量的电子测量。

Electronic measurement of the intracellular concentration and net flux of sodium in the squid axon.

作者信息

MOORE J W, ADELMAN W J

出版信息

J Gen Physiol. 1961 Sep;45(1):77-92. doi: 10.1085/jgp.45.1.77.

Abstract

A unique, rapid, and non-destructive determination of the intracellular sodium concentration of a squid axon may be provided by the "voltage clamp" technique, in which the potential across the axon membrane is under electronic control. The potential at which the early component of ionic current reverses following a membrane potential step was used as an index of the intracellular sodium concentration. Several types of experiments were used to test the applicability of this method for measurement of intracellular sodium and its net flux. The concentration was found to increase from 38 mM for a fresh axon to 50 mM in about an hour. From this change, the net flux for a fresh resting axon was estimated to be 40 pmoles/cm(2) sec. Rapid stimulation of an unclamped axon produced a marked increase in the rate of sodium accumulation. Rapid pulsing of the membrane in a voltage clamp to potentials more positive than the sodium potential moved sodium out fast enough to produce a definite decrease in internal concentration. The agreement between the results with this method and those with more direct methods is quite satisfactory. An attractive feature of this method of intracellular sodium determination is that the physiological function of the axon is maintained and other measurements may be made concurrently.

摘要

“电压钳”技术可实现对乌贼轴突细胞内钠浓度的独特、快速且非破坏性测定,在该技术中,轴突膜两侧的电位受电子控制。离子电流早期成分在膜电位阶跃后发生反转时的电位被用作细胞内钠浓度的指标。采用了几种类型的实验来测试该方法在测量细胞内钠及其净通量方面的适用性。结果发现,新鲜轴突的钠浓度从38 mM在约一小时内增加到50 mM。根据这一变化,估计新鲜静息轴突的净通量为40皮摩尔/平方厘米·秒。对未钳制的轴突进行快速刺激会使钠积累速率显著增加。在电压钳中对膜进行快速脉冲,使其电位比钠电位更正,能将钠快速移出,足以使内部浓度明显降低。该方法与更直接方法所得结果之间的一致性相当令人满意。这种细胞内钠测定方法的一个吸引人的特点是,轴突的生理功能得以维持,并且可以同时进行其他测量。

相似文献

2
Action of external divalent ion reduction on sodium movement in the squid giant axon.
J Gen Physiol. 1961 Sep;45(1):93-103. doi: 10.1085/jgp.45.1.93.
3
Sodium and potassium ion effluxes from squid axons under voltage clamp conditions.
Biophys J. 1962 May;2(3):257-74. doi: 10.1016/s0006-3495(62)86854-4.
4
Sodium influxes in internally perfused squid giant axon during voltage clamp.
J Physiol. 1969 May;201(3):657-64. doi: 10.1113/jphysiol.1969.sp008778.
6
Anesthetic and calcium action in the voltage-clamped squid giant axon.
J Gen Physiol. 1959 Mar 20;42(4):793-802. doi: 10.1085/jgp.42.4.793.
9
INTRACELLULAR PERFUSION OF CHILEAN GIANT SQUID AXONS.
Science. 1964 Sep 18;145(3638):1313-5. doi: 10.1126/science.145.3638.1313.

引用本文的文献

2
EFFECT OF DETERGENT ON ELECTRICAL PROPERTIES OF SQUID AXON MEMBRANE.
J Gen Physiol. 1964 May;47(5):975-86. doi: 10.1085/jgp.47.5.975.
3
Action of external divalent ion reduction on sodium movement in the squid giant axon.
J Gen Physiol. 1961 Sep;45(1):93-103. doi: 10.1085/jgp.45.1.93.
4
Action potential propagation and threshold parameters in inhomogeneous regions of squid axons.
J Physiol. 1983 Mar;336:285-300. doi: 10.1113/jphysiol.1983.sp014581.
5
Cation movements in perfused giant axons.
J Physiol. 1966 Jan;182(1):209-16. doi: 10.1113/jphysiol.1966.sp007819.
6
Voltage clamp experiments on internally perfused giant axons.
J Physiol. 1965 Oct;180(4):788-820. doi: 10.1113/jphysiol.1965.sp007732.
7
The temperature dependence of the movement of sodium ions associated with nerve impulses.
J Physiol. 1974 Jan;236(1):95-111. doi: 10.1113/jphysiol.1974.sp010424.
8
Axon voltage-clamp simulations. III. Postsynaptic region.
Biophys J. 1975 Jan;15(1):37-54. doi: 10.1016/S0006-3495(75)85790-0.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):449-72. doi: 10.1113/jphysiol.1952.sp004717.
3
Measurement of current-voltage relations in the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):424-48. doi: 10.1113/jphysiol.1952.sp004716.
4
The sodium and potassium content of cephalopod nerve fibers.
J Physiol. 1951 Jun;114(1-2):151-82. doi: 10.1113/jphysiol.1951.sp004609.
5
The ionic movements during nervous activity.
J Physiol. 1951 Jun;114(1-2):119-50. doi: 10.1113/jphysiol.1951.sp004608.
6
Resting and action potentials of the squid giant axon in vivo.
J Gen Physiol. 1960 May;43(5):961-70. doi: 10.1085/jgp.43.5.961.
7
Liquid junction and membrane potentials of the squid giant axon.
J Gen Physiol. 1960 May;43(5):971-80. doi: 10.1085/jgp.43.5.971.
8
Ionic current measurements in the squid giant axon membrane.
J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.
9
Action of external divalent ion reduction on sodium movement in the squid giant axon.
J Gen Physiol. 1961 Sep;45(1):93-103. doi: 10.1085/jgp.45.1.93.
10
Kinetics of ion movement in the squid giant axon.
J Gen Physiol. 1955 Nov 20;39(2):279-300. doi: 10.1085/jgp.39.2.279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验