Suppr超能文献

枪乌贼轴突非均匀区域的动作电位传播和阈值参数

Action potential propagation and threshold parameters in inhomogeneous regions of squid axons.

作者信息

Moore J W, Westerfield M

出版信息

J Physiol. 1983 Mar;336:285-300. doi: 10.1113/jphysiol.1983.sp014581.

Abstract

The squid giant axon was used as a model system in which to determine the independent contributions of membrane excitability and diameter changes to threshold parameters and propagation of action potentials in inhomogeneous regions. The membrane excitability of a segment of an axon was altered by changes in the bathing solution, while its effective electrical diameter was increased by the insertion of a low-resistance axial wire. In computer simulations of these experiments, similar alterations were made in the membrane's conductance and axon's diameter. The inflexions in the shapes of action potentials propagating into a region with abrupt decreases in axial resistance become more pronounced when the interval between impulses was shortened. At short intervals, propagation of the second impulse failed. In contrast, reduction of membrane excitability produced inflexion-free changes in action potential shape and allowed a close-following second impulse to pass through the inhomogeneity. A combined decrease in membrane excitability and increase in diameter of the same region exaggerated the changes in action potential shape characteristic of the diameter increase alone. Threshold parameters were obtained from 'strength-duration' excitability relationships measured by injection of current at different points along the axon. When only the membrane excitability was reduced, threshold characteristics changed smoothly from one region of the nerve to another. In contrast, lowering the internal resistance or increasing the diameter in one region of a nerve lowered the time constant of excitation and the threshold for brief (relative to rheobasic) current stimuli in the small-diameter region near the transition while raising them in the larger-diameter region.

摘要

乌贼巨大轴突被用作一个模型系统,用于确定膜兴奋性和直径变化对非均匀区域中阈值参数和动作电位传播的独立贡献。通过改变浸泡溶液来改变轴突某一段的膜兴奋性,同时通过插入低电阻轴向导线来增加其有效电直径。在这些实验的计算机模拟中,对膜电导和轴突直径进行了类似的改变。当脉冲间隔缩短时,传播到轴向电阻突然减小区域的动作电位形状的拐点变得更加明显。在短间隔时,第二个脉冲的传播失败。相反,膜兴奋性的降低使动作电位形状产生无拐点的变化,并允许紧随其后的第二个脉冲穿过非均匀区域。同一区域膜兴奋性的降低和直径的增加相结合,夸大了仅直径增加时动作电位形状的变化特征。阈值参数是从沿着轴突不同点注入电流测量的“强度 - 持续时间”兴奋性关系中获得的。当仅降低膜兴奋性时,阈值特征在神经的一个区域到另一个区域之间平滑变化。相反,降低神经某一区域的内阻或增加其直径会降低兴奋的时间常数,并降低靠近转变处小直径区域中短暂(相对于基强度)电流刺激的阈值,而在大直径区域中则会提高这些值。

相似文献

1
Action potential propagation and threshold parameters in inhomogeneous regions of squid axons.
J Physiol. 1983 Mar;336:285-300. doi: 10.1113/jphysiol.1983.sp014581.
3
Squid giant axons. A model for the neuron soma?
Biophys J. 1976 Aug;16(8):953-63. doi: 10.1016/S0006-3495(76)85745-1.
5
Ephaptic transmission in squid giant axons.
Am J Physiol. 1978 May;234(5):C162-9. doi: 10.1152/ajpcell.1978.234.5.C162.
6
Effects of cellular geometry on current flow during a propagated action potential.
Biophys J. 1980 Aug;31(2):183-94. doi: 10.1016/S0006-3495(80)85049-1.
7
Reversible electrical breakdown of squid giant axon membrane.
Biochim Biophys Acta. 1981 Jul 6;645(1):115-23. doi: 10.1016/0005-2736(81)90518-6.
8
Axon-Schwann cell interaction in the squid nerve fibre.
J Physiol. 1972 Sep;225(2):275-96. doi: 10.1113/jphysiol.1972.sp009940.
9
Optimization of the leak conductance in the squid giant axon.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021906. doi: 10.1103/PhysRevE.82.021906. Epub 2010 Aug 6.

引用本文的文献

1
Mitochondria delay action potential propagation.
Commun Biol. 2025 Sep 9;8(1):1341. doi: 10.1038/s42003-025-08583-x.
2
Neural models and algorithms for sensorimotor control of an octopus arm.
Biol Cybern. 2025 Sep 8;119(4-6):25. doi: 10.1007/s00422-025-01019-z.
3
Recording Synaptic Transmission from Auditory Mixed Synapses on the Mauthner Cells of Developing Zebrafish.
eNeuro. 2022 Jun 21;9(3). doi: 10.1523/ENEURO.0021-22.2022. Print 2022 May-Jun.
4
Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron.
J Neurophysiol. 2021 Jan 1;125(1):23-42. doi: 10.1152/jn.00734.2019. Epub 2020 Oct 21.
5
Mutation of Npr2 leads to blurred tonotopic organization of central auditory circuits in mice.
PLoS Genet. 2014 Dec 4;10(12):e1004823. doi: 10.1371/journal.pgen.1004823. eCollection 2014 Dec.
7
Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons.
J Neurosci. 2005 Feb 16;25(7):1750-60. doi: 10.1523/JNEUROSCI.4217-04.2005.
8
On the site of impulse initiation in a neurone.
J Physiol. 1983 Mar;336:301-11. doi: 10.1113/jphysiol.1983.sp014582.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
On increasing the velocity of a nerve impulse.
J Physiol. 1959 Oct;148(3):665-70. doi: 10.1113/jphysiol.1959.sp006315.
4
Ionic current measurements in the squid giant axon membrane.
J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.
5
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
6
Ionic conductance changes in lobster axon membrane when lanthanum is substituted for calcium.
J Gen Physiol. 1966 Nov;50(2):461-71. doi: 10.1085/jgp.50.2.461.
7
Effects of cellular geometry on current flow during a propagated action potential.
Biophys J. 1980 Aug;31(2):183-94. doi: 10.1016/S0006-3495(80)85049-1.
8
Basis of tetrodotoxin's selectivity in blockage of squid axons.
J Gen Physiol. 1967 May;50(5):1401-11. doi: 10.1085/jgp.50.5.1401.
9
Temperature characteristics of excitation in space-clamped squid axons.
J Gen Physiol. 1966 May;49(5):1007-18. doi: 10.1085/jgp.49.5.1007.
10
Time constants and electrotonic length of membrane cylinders and neurons.
Biophys J. 1969 Dec;9(12):1483-508. doi: 10.1016/S0006-3495(69)86467-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验