Suppr超能文献

轴突电压钳模拟。III. 突触后区域。

Axon voltage-clamp simulations. III. Postsynaptic region.

作者信息

Joyner R W, Moore J W, Ramón F

出版信息

Biophys J. 1975 Jan;15(1):37-54. doi: 10.1016/S0006-3495(75)85790-0.

Abstract

This is the third in a series of four papers in which we present the numerical simulations of the application of the voltage clamp technique to excitable cells. In this paper we discuss the problem of voltage clamping a region of a cylindrical cell using microelectrodes for current injection and voltage recording. A recently developed technique (Llinás et al., 1974) of internal application of oil drops to electrically insulate a short length of the postsynaptic region of the squid giant synapse is evaluated by simulation of the voltage clamp of an excitable cylindrical cell of finite length with variable placement of the current and voltage electrodes. Our results show that ENa can be determined quite accurately with feasible oil gap lengths but that the determination of the reversal potential for the synaptic conductance, ES, can be considerably in error. The error in the determination of ES dependp, and especially the membrane resistance at the time the synaptic conductance occurs. It is shown that the application of tetraethylammonium chloride to block the active potassium conductance very significantly reduces the error in the determination of ES. In addition we discuss the effects of cable length and electrode position on the apparent amplitude and time course of the syn aptic conductance change. These results are particularly relevant to the application of the voltage clamp technique to cells with nonsomatic synapses. The method of simulation presented here provides a tool for evaluation of voltage clamp analysis of synaptic transmission for any cell with known membrane parameters and geometry.

摘要

这是四篇系列论文中的第三篇,我们在其中展示了电压钳技术应用于可兴奋细胞的数值模拟。在本文中,我们讨论了使用微电极进行电流注入和电压记录来对圆柱形细胞的一个区域进行电压钳制的问题。通过对一个有限长度的可兴奋圆柱形细胞进行电压钳制模拟,其中电流和电压电极位置可变,来评估一种最近开发的技术(利纳斯等人,1974年),即在鱿鱼巨大突触的突触后区域内部应用油滴以电绝缘一小段区域。我们的结果表明,对于可行的油隙长度,可以相当准确地确定ENa,但确定突触电导的反转电位ES时可能会有相当大的误差。确定ES时的误差取决于,尤其是突触电导出现时的膜电阻。结果表明,应用氯化四乙铵来阻断活性钾电导可非常显著地降低确定ES时的误差。此外,我们还讨论了电缆长度和电极位置对突触电导变化的表观幅度和时间进程的影响。这些结果对于将电压钳技术应用于具有非体突触的细胞尤为相关。这里介绍的模拟方法为评估任何具有已知膜参数和几何形状的细胞的突触传递电压钳分析提供了一种工具。

相似文献

1
Axon voltage-clamp simulations. III. Postsynaptic region.
Biophys J. 1975 Jan;15(1):37-54. doi: 10.1016/S0006-3495(75)85790-0.
2
Axon voltage-clamp simulations. II. Double sucrose-gap method.
Biophys J. 1975 Jan;15(1):25-35. doi: 10.1016/S0006-3495(75)85789-4.
3
Axon voltage-clamp simulations. I. Methods and tests.
Biophys J. 1975 Jan;15(1):11-24. doi: 10.1016/S0006-3495(75)85788-2.
4
Axon voltage-clamp simulations. A multicellular preparation.
Biophys J. 1975 Jan;15(1):55-69. doi: 10.1016/S0006-3495(75)85791-2.
5
Equilibrium potential for the postsynaptic response in the squid giant synapse.
J Gen Physiol. 1974 Nov;64(5):519-35. doi: 10.1085/jgp.64.5.519.
6
Voltage clamp simulation.
Fed Proc. 1975 Apr;34(5):1343-9.
7
Postsynaptic factors controlling the shape of potentials at the squid giant synapse.
Neuroscience. 1982 Jun;7(6):1367-75. doi: 10.1016/0306-4522(82)90250-0.
9
Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances.
J Neurophysiol. 2008 Mar;99(3):1127-36. doi: 10.1152/jn.01232.2007. Epub 2008 Jan 9.
10
Spatial control of membrane potential: a method for improved voltage clamping of the squid giant synapse.
J Neurosci Methods. 1988 Jan;22(3):195-202. doi: 10.1016/0165-0270(88)90040-4.

引用本文的文献

2
Divalent cations differentially support transmitter release at the squid giant synapse.
J Physiol. 1984 Jan;346:257-71. doi: 10.1113/jphysiol.1984.sp015020.
3
Voltage-activated currents recorded from rabbit pigmented ciliary body epithelial cells in culture.
J Physiol. 1989 Nov;418:83-103. doi: 10.1113/jphysiol.1989.sp017829.

本文引用的文献

1
ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE.
J Gen Physiol. 1965 May;48(5):859-72. doi: 10.1085/jgp.48.5.859.
2
Analysis of certain errors in squid axon voltage clamp measurements.
Biophys J. 1960 Nov;1(2):161-202. doi: 10.1016/s0006-3495(60)86882-8.
4
A study on the mechanism of impulse transmission across the giant synapse of the squid.
J Physiol. 1958 Aug 29;143(1):114-37. doi: 10.1113/jphysiol.1958.sp006048.
5
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
6
Voltage clamp experiments in striated muscle fibres.
J Physiol. 1970 Jul;208(3):607-44. doi: 10.1113/jphysiol.1970.sp009139.
7
A quantitative description of end-plate currents.
J Physiol. 1972 May;223(1):173-97. doi: 10.1113/jphysiol.1972.sp009840.
8
Reconstruction of the action potential of frog sartorius muscle.
J Physiol. 1973 Nov;235(1):103-31. doi: 10.1113/jphysiol.1973.sp010380.
9
Synaptic current at the squid giant synapse.
Science. 1969 Oct 24;166(3904):510-2. doi: 10.1126/science.166.3904.510.
10
Axon voltage-clamp simulations. A multicellular preparation.
Biophys J. 1975 Jan;15(1):55-69. doi: 10.1016/S0006-3495(75)85791-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验