Suppr超能文献

Voltage-sensitive chloride channels of large conductance in the membrane of pig aortic endothelial cells.

作者信息

Groschner K, Kukovetz W R

机构信息

Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.

出版信息

Pflugers Arch. 1992 Jun;421(2-3):209-17. doi: 10.1007/BF00374829.

Abstract

Single, large-conductance chloride-selective channels were studied in the membrane of pig aortic endothelial cells. These channels were usually inactive in cell-attached recordings and activated spontaneously upon formation of inside-out patches or amphotericin B-perforated vesicles. Channel activity was voltage dependent, with a maximum open probability within the range of -20 mV to + 20 mV. Addition of 1 mM Zn2+ to either the cytoplasmic or extracellular side blocked channel activity reversibly. Extracellular 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) blocked the channels; the concentration necessary for half-maximum blockade was 100 mumol/l. The frequency of observing channels in cell-attached patches increased from less than 5% to 27% when cells were treated for several minutes with 1 mumol/l bradykinin and to 80% in the presence of the calcium ionophore A23187 (1 mumol/l). Both agents increase the cytoplasmic Ca2+ concentration, thereby stimulating nitric oxide (NO) synthesis and cGMP formation in endothelial cells. Sodium nitroprusside (100 mumol/l), which spontaneously releases NO, did not increase Cl- channel activity in intact cells. Polymyxin B (100 mumol/l), an inhibitor of protein kinase C, clearly enhanced Cl- channel activity in intact cells, resulting in the observation of Cl- channels in 70% of cell-attached patches. Our results demonstrate the existence of a large-conductance (LC-type) Cl- channel in vascular endothelium which is subject to a complex cellular regulation, possibly involving inhibition via phosphorylation by protein kinase C, and activation by a Ca2(+)-dependent process which is different from the NO/cGMP pathway.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验