Suppr超能文献

神经细胞重复放电的解读。

Interpretation of the repetitive firing of nerve cells.

作者信息

FUORTES M G, MANTEGAZZINI F

出版信息

J Gen Physiol. 1962 Jul;45(6):1163-79. doi: 10.1085/jgp.45.6.1163.

Abstract

Eccentric cells of Limulus respond with repetitive firing to sustained depolarizing currents. Following stimulation with a step of current, latency is shorter than first interval and later intervals increase progressively. A shock of intensity twice threshold can evoke firing 25 msec. after an impulse. But in the same cell, a current step twice rheobase evokes a second impulse more than 50 msec. after the first, and current intensity must be raised to over five times rheobase to obtain a first interval of about 25 msec. Repetitive firing was evoked by means of trains of shocks. With stimuli of moderate intensity, firing was evoked by only some of the shocks and intervals between successive impulses increased with time. This is ascribed to accumulation of refractoriness with successive impulses. Higher frequencies of firing are obtained with shocks of intensity n x threshold than with constant currents of intensity n x rheobase. It is concluded that prolonged currents depress the processes leading to excitation and that (in the cells studied) repetitive firing is controlled both by the after-effects of firing (refractoriness) and by the depressant effects of sustained stimuli (accommodation). Development of subthreshold "graded activity" is an important process leading to excitation of eccentric cells, but is not the principal factor determining frequency of firing in response to constant currents.

摘要

鲎的偏心细胞对持续的去极化电流以重复放电做出反应。用阶跃电流刺激后,潜伏期比第一个间隔短,随后的间隔逐渐增加。强度为阈值两倍的电击可在冲动后25毫秒引发放电。但在同一个细胞中,两倍基强度的电流阶跃在第一个冲动后50多毫秒引发第二个冲动,并且电流强度必须提高到超过五倍基强度才能获得约25毫秒的第一个间隔。通过一系列电击诱发重复放电。对于中等强度的刺激,只有一些电击能诱发放电,并且连续冲动之间的间隔随时间增加。这归因于连续冲动导致的不应性积累。与强度为n×基强度的恒定电流相比,强度为n×阈值的电击可获得更高的放电频率。得出的结论是,长时间的电流会抑制导致兴奋的过程,并且(在所研究的细胞中)重复放电受放电的后效应(不应性)和持续刺激的抑制效应(适应)共同控制。阈下“分级活动”的发展是导致偏心细胞兴奋的一个重要过程,但不是决定对恒定电流反应时放电频率的主要因素。

相似文献

1
Interpretation of the repetitive firing of nerve cells.
J Gen Physiol. 1962 Jul;45(6):1163-79. doi: 10.1085/jgp.45.6.1163.
4
Further study of soma, dendrite, and axon excitation in single neurons.
J Gen Physiol. 1955 Sep 20;39(1):121-53. doi: 10.1085/jgp.39.1.121.
5
Current excitation threshold in sensory neurons of leech central nervous system.
J Neurophysiol. 1976 Nov;39(6):1176-83. doi: 10.1152/jn.1976.39.6.1176.
6
Synaptic inhibition in an isolated nerve cell.
J Gen Physiol. 1955 Sep 20;39(1):155-84. doi: 10.1085/jgp.39.1.155.
7
Inhibition in the eye of Limulus.
J Gen Physiol. 1956 May 20;39(5):651-73. doi: 10.1085/jgp.39.5.651.
8
Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
J Neurophysiol. 1989 Feb;61(2):245-56. doi: 10.1152/jn.1989.61.2.245.
9
Ca2+ and K+ currents regulate accommodation and firing frequency in guinea pig bronchial ganglion neurons.
Am J Physiol. 1998 Aug;275(2):L357-64. doi: 10.1152/ajplung.1998.275.2.L357.
10
Effects of nerve impulses on threshold of frog sciatic nerve fibres.
J Physiol. 1979 May;290(2):273-303. doi: 10.1113/jphysiol.1979.sp012771.

引用本文的文献

1
Low-dimensional models of single neurons: a review.
Biol Cybern. 2023 Jun;117(3):163-183. doi: 10.1007/s00422-023-00960-1. Epub 2023 Apr 15.
2
Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep.
PNAS Nexus. 2022 Dec 10;2(1):pgac286. doi: 10.1093/pnasnexus/pgac286. eCollection 2023 Jan.
3
A surrogate gradient spiking baseline for speech command recognition.
Front Neurosci. 2022 Aug 22;16:865897. doi: 10.3389/fnins.2022.865897. eCollection 2022.
4
Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.
PLoS Comput Biol. 2012;8(10):e1002711. doi: 10.1371/journal.pcbi.1002711. Epub 2012 Oct 4.
5
A stochastic model of the repetitive activity of neurons.
Biophys J. 1966 Jan;6(1):53-69. doi: 10.1016/S0006-3495(66)86639-0.
6
Probabilistic firing of neurons considered as a first passage problem.
Biophys J. 1966 Jul;6(4):435-51. doi: 10.1016/S0006-3495(66)86668-7. Epub 2008 Dec 31.
7
Interspike interval fluctuations in aplysia pacemaker neurons.
Biophys J. 1966 Jul;6(4):411-34. doi: 10.1016/S0006-3495(66)86667-5. Epub 2008 Dec 31.
8
Predicting spike timing of neocortical pyramidal neurons by simple threshold models.
J Comput Neurosci. 2006 Aug;21(1):35-49. doi: 10.1007/s10827-006-7074-5. Epub 2006 Apr 22.
9
[INTRACELLULAR STIMULATION OF CORTICAL NERVE CELLS].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Oct 5;281:129-51.
10
THE MECHANISM OF DISCHARGE PATTERN FORMATION IN CRAYFISH INTERNEURONS.
J Gen Physiol. 1965 Jan;48(3):435-53. doi: 10.1085/jgp.48.3.435.

本文引用的文献

1
The interpretation of potential changes in the spinal cord.
J Physiol. 1938 Apr 14;92(3):276-321. doi: 10.1113/jphysiol.1938.sp003603.
2
Multiple response to constant current in frog's medullated nerve.
J Physiol. 1936 Nov 6;88(2):239-55. doi: 10.1113/jphysiol.1936.sp003435.
3
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):497-506. doi: 10.1113/jphysiol.1952.sp004719.
4
Depolarization of sensory terminals and the initiation of impulses in the muscle spindle.
J Physiol. 1950 Oct 16;111(3-4):261-82. doi: 10.1113/jphysiol.1950.sp004479.
5
Changes in the discharge from a muscle spindle produced by electrotonus in the sensory nerve.
J Physiol. 1955 Mar 28;127(3):636-40. doi: 10.1113/jphysiol.1955.sp005284.
6
Excitation and conduction.
Annu Rev Physiol. 1961;23:357-86. doi: 10.1146/annurev.ph.23.030161.002041.
7
Analysis of repetitive transient response of lobster motor axons.
Am J Physiol. 1960 Aug;199:367-72. doi: 10.1152/ajplegacy.1960.199.2.367.
8
Electric activity of cells in the eye of Limulus.
Am J Ophthalmol. 1958 Nov;46(5 Pt 2):210-22; discussion 222-3. doi: 10.1016/0002-9394(58)90800-6.
9
Steps in the production of motoneuron spikes.
J Gen Physiol. 1957 May 20;40(5):735-52. doi: 10.1085/jgp.40.5.735.
10
Stimulation of spinal motoneurones with intracellular electrodes.
J Physiol. 1956 Nov 28;134(2):451-70. doi: 10.1113/jphysiol.1956.sp005657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验