Jolivet Renaud, Rauch Alexander, Lüscher Hans-Rudolf, Gerstner Wulfram
Ecol Polytechnique Federale de Lausanne (EPFL), School of Computer and Communication Sciences and Brain Mind Institute, Station 15, CH-1015, Lausanne, Switzerland.
J Comput Neurosci. 2006 Aug;21(1):35-49. doi: 10.1007/s10827-006-7074-5. Epub 2006 Apr 22.
Neurons generate spikes reliably with millisecond precision if driven by a fluctuating current--is it then possible to predict the spike timing knowing the input? We determined parameters of an adapting threshold model using data recorded in vitro from 24 layer 5 pyramidal neurons from rat somatosensory cortex, stimulated intracellularly by a fluctuating current simulating synaptic bombardment in vivo. The model generates output spikes whenever the membrane voltage (a filtered version of the input current) reaches a dynamic threshold. We find that for input currents with large fluctuation amplitude, up to 75% of the spike times can be predicted with a precision of +/-2 ms. Some of the intrinsic neuronal unreliability can be accounted for by a noisy threshold mechanism. Our results suggest that, under random current injection into the soma, (i) neuronal behavior in the subthreshold regime can be well approximated by a simple linear filter; and (ii) most of the nonlinearities are captured by a simple threshold process.
如果由波动电流驱动,神经元能够以毫秒级精度可靠地产生尖峰信号——那么在已知输入的情况下,是否有可能预测尖峰时间呢?我们使用从大鼠体感皮层的24个第5层锥体神经元体外记录的数据,确定了一个适应性阈值模型的参数,这些神经元通过模拟体内突触轰击的波动电流进行细胞内刺激。每当膜电压(输入电流的滤波版本)达到动态阈值时,该模型就会产生输出尖峰。我们发现,对于波动幅度较大的输入电流,高达75%的尖峰时间可以在±2毫秒的精度内被预测。一些内在的神经元不可靠性可以由有噪声的阈值机制来解释。我们的结果表明,在向胞体随机注入电流的情况下,(i)阈下状态下的神经元行为可以通过一个简单的线性滤波器很好地近似;(ii)大多数非线性可以通过一个简单的阈值过程来捕捉。