Suppr超能文献

萘啶酸对大肠杆菌的作用机制。二、脱氧核糖核酸合成的抑制

MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.

作者信息

GOSS W A, DEITZ W H, COOK T M

出版信息

J Bacteriol. 1965 Apr;89(4):1068-74. doi: 10.1128/jb.89.4.1068-1074.1965.

Abstract

Goss, William A. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), William H. Deitz, and Thomas M. Cook. Mechanism of action of nalidixic acid on Escherichia coli. II. Inhibition of deoxyribonucleic acid synthesis. J. Bacteriol. 89:1068-1074. 1965.-Nalidixic acid was shown to inhibit specifically the synthesis of deoxyribonucleic acid (DNA) in Escherichia coli. Slight effects on protein and ribonucleic acid (RNA) synthesis were observed only at higher levels of drug or after prolonged incubation. The inhibition of DNA synthesis in E. coli 15TAU, as measured by incorporation of C(14)-labeled thymine, was observed after exposure to nalidixic acid for 10 min. Inhibition of the incorporation of C(14)-labeled uracil into RNA and C(14)-labeled l-arginine into protein (21 and 28% inhibition, respectively) was observed only after 60 min of exposure. When cultures of E. coli 15TAU were exposed to 3.0 mug/ml of nalidixic acid (slightly greater than the minimal growth inhibitory concentration), the incorporation of C(14)-labeled thymidine was inhibited 30 to 40% after 90 min. Nalidixic acid at 10 mug/ml, a lethal concentration, inhibited thymidine incorporation 72% during this period. Nalidixic acid at 1.0 mug/ml had no apparent effect on the incorporation of C(14)-labeled adenine or C(14)-labeled uracil into RNA of cultures of E. coli 198, a wild-type strain. However, incorporation of both bases into DNA was strongly inhibited after 60 min of exposure (66 and 69%, respectively). Nalidixic acid inhibited DNA replication during a single round of synthesis. In contrast with "thymineless death," nalidixic acid was not lethal to E. coli 15TAU during restricted RNA and protein synthesis (i.e., in a medium containing thymine but lacking arginine and uracil). We have shown also that this chemotherapeutic agent has little effect on the synthesis of protein or RNA required to initiate DNA replication. After 75 min of inhibition, the capacity of E. coli 15TAU to synthesize DNA in a medium containing thymine, arginine, and uracil may be restored by a simple filtration and washing process, indicating that the drug is not firmly bound. These studies leave little doubt that a primary action of nalidixic acid is the inhibition of the synthesis of DNA in E. coli.

摘要

戈斯,威廉·A.(纽约州伦塞勒斯特林-温思罗普研究所),威廉·H. 戴茨,托马斯·M. 库克。萘啶酸对大肠杆菌的作用机制。II. 对脱氧核糖核酸合成的抑制。《细菌学杂志》89:1068 - 1074。1965年。已证明萘啶酸能特异性抑制大肠杆菌中脱氧核糖核酸(DNA)的合成。仅在较高药物浓度或长时间孵育后,才观察到对蛋白质和核糖核酸(RNA)合成有轻微影响。用C(14)标记的胸腺嘧啶掺入量来测定,暴露于萘啶酸10分钟后,观察到大肠杆菌15TAU中DNA合成受到抑制。仅在暴露60分钟后,才观察到C(14)标记的尿嘧啶掺入RNA以及C(14)标记的L - 精氨酸掺入蛋白质受到抑制(分别抑制21%和28%)。当大肠杆菌15TAU培养物暴露于3.0微克/毫升的萘啶酸(略高于最小生长抑制浓度)时,90分钟后C(14)标记的胸苷掺入受到30%至40%的抑制。10微克/毫升的萘啶酸,即致死浓度,在此期间抑制胸苷掺入72%。1.0微克/毫升的萘啶酸对野生型菌株大肠杆菌198培养物中C(14)标记的腺嘌呤或C(14)标记的尿嘧啶掺入RNA没有明显影响。然而,暴露60分钟后,两种碱基掺入DNA均受到强烈抑制(分别为66%和69%)。萘啶酸在一轮合成过程中抑制DNA复制。与“胸腺嘧啶饥饿死亡”不同,在受限的RNA和蛋白质合成过程中(即在含有胸腺嘧啶但缺乏精氨酸和尿嘧啶的培养基中),萘啶酸对大肠杆菌15TAU并不致命。我们还表明,这种化疗药物对启动DNA复制所需的蛋白质或RNA合成影响很小。抑制75分钟后,通过简单的过滤和洗涤过程,大肠杆菌15TAU在含有胸腺嘧啶、精氨酸和尿嘧啶的培养基中合成DNA的能力可以恢复,这表明药物没有牢固结合。这些研究毫无疑问地表明,萘啶酸的主要作用是抑制大肠杆菌中DNA的合成。

相似文献

1
MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.
J Bacteriol. 1965 Apr;89(4):1068-74. doi: 10.1128/jb.89.4.1068-1074.1965.
2
Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality.
J Bacteriol. 1966 Feb;91(2):768-73. doi: 10.1128/jb.91.2.768-773.1966.
3
MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.
J Bacteriol. 1964 Oct;88(4):1112-8. doi: 10.1128/jb.88.4.1112-1118.1964.
5
Polymer synthesis in killed bacteria: lethality of 2',3'-dideoxyadenosine.
J Bacteriol. 1966 Sep;92(3):565-74. doi: 10.1128/jb.92.3.565-574.1966.
6
Induction of excessive deoxyribonucleic acid synthesis in Escherichia coli by nalidixic acid.
J Bacteriol. 1967 Nov;94(5):1664-71. doi: 10.1128/jb.94.5.1664-1671.1967.
7
Survival and macromolecular synthesis during incubation of Escherichia coli in limiting thymine.
J Bacteriol. 1971 Apr;106(1):197-203. doi: 10.1128/jb.106.1.197-203.1971.
8
EVIDENCE OF LYSOGENY IN DERIVATIVES OF ESCHERICHIA COLI.
J Bacteriol. 1965 Aug;90(2):446-52. doi: 10.1128/jb.90.2.446-452.1965.
9
Bactericidal action of nalidixic acid on Bacillus subtilis.
J Bacteriol. 1966 Nov;92(5):1510-4. doi: 10.1128/jb.92.5.1510-1514.1966.
10
Effect of nalidixic acid and hydroxyurea on division ability of Escherichia coli fil+ and lon- strains.
J Bacteriol. 1968 Feb;95(2):520-30. doi: 10.1128/jb.95.2.520-530.1968.

引用本文的文献

1
TisB protein is the single molecular determinant underlying multiple downstream effects of ofloxacin in .
Sci Adv. 2024 Mar 29;10(13):eadk1577. doi: 10.1126/sciadv.adk1577. Epub 2024 Mar 27.
2
Quinolone Antibiotics: Resistance and Therapy.
Infect Drug Resist. 2023 Feb 10;16:811-820. doi: 10.2147/IDR.S401663. eCollection 2023.
3
Antibiotic-Induced Mutagenesis: Under the Microscope.
Front Microbiol. 2020 Oct 22;11:585175. doi: 10.3389/fmicb.2020.585175. eCollection 2020.
4
Investigating the short- and long-term effects of antibacterial agents using a real-time assay based on bioluminescent -lux.
Heliyon. 2020 Jul 2;6(7):e04232. doi: 10.1016/j.heliyon.2020.e04232. eCollection 2020 Jul.
5
Post-stress bacterial cell death mediated by reactive oxygen species.
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10064-10071. doi: 10.1073/pnas.1901730116. Epub 2019 Apr 4.
6
Our Evolving Understanding of the Mechanism of Quinolones.
Antibiotics (Basel). 2018 Apr 8;7(2):32. doi: 10.3390/antibiotics7020032.
7
Construction of a nrdA::luxCDABE Fusion and Its Use in Escherichia coli as a DNA Damage Biosensor.
Sensors (Basel). 2008 Feb 22;8(2):1297-1307. doi: 10.3390/s8021297.
8
Drug Resistance Mechanisms in Mycobacterium tuberculosis.
Antibiotics (Basel). 2014 Jul 2;3(3):317-40. doi: 10.3390/antibiotics3030317.
9
Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones.
Nucleic Acids Res. 2016 Apr 20;44(7):3304-16. doi: 10.1093/nar/gkw161. Epub 2016 Mar 16.
10
DNA Topoisomerases.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0010-2014.

本文引用的文献

1
The control of normal DNA replication in bacteria.
Cold Spring Harb Symp Quant Biol. 1961;26:45-52. doi: 10.1101/sqb.1961.026.01.010.
3
Some physiological and genetic properties of a strain of Escherichia coli requiring thymine, arginine and uracil.
Biochim Biophys Acta. 1959 Aug;34:341-53. doi: 10.1016/0006-3002(59)90287-2.
4
MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.
J Bacteriol. 1964 Oct;88(4):1112-8. doi: 10.1128/jb.88.4.1112-1118.1964.
5
Thymine deficiency and the normal DNA replication cycle. I.
J Mol Biol. 1961 Apr;3:144-55. doi: 10.1016/s0022-2836(61)80041-7.
6
Involvement of newly-formed protein in the syntheses of deoxyibonucleic acid.
Biochim Biophys Acta. 1960 Nov 4;44:241-4. doi: 10.1016/0006-3002(60)91559-6.
7
Relationship between thymineless death and ultraviolet inactivation in Escherichia coli.
J Bacteriol. 1961 Aug;82(2):187-94. doi: 10.1128/jb.82.2.187-194.1961.
8
The isolation and properties of amino acid requiring mutants of a thymineless bacterium.
J Bacteriol. 1957 Sep;74(3):350-5. doi: 10.1128/jb.74.3.350-355.1957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验