Gutierrez Arnaud, Stokes Jonathan M, Matic Ivan
Inserm U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France.
Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Antibiotics (Basel). 2018 Apr 8;7(2):32. doi: 10.3390/antibiotics7020032.
The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.
维持DNA超螺旋对于众多生物过程的正常调控至关重要。作为这种调控模式的结果,在复制叉之前,DNA复制机器易于将超螺旋区域引入DNA双螺旋中。DNA超螺旋的解决对于维持适合生命的DNA复制速率至关重要。这种解决由被称为拓扑异构酶的进化保守酶来处理。拓扑异构酶的活性至关重要,因此构成了抗生素靶向作用的主要候选对象。在本综述中,我们展示了标志性研究,描述了喹诺酮类药物的作用模式,喹诺酮类是一类针对细菌中拓扑异构酶功能的抗菌药物。通过按时间顺序分析收集到的关于这类重要抗生素作用模式的数据,我们强调有必要超越药物与主要靶点的相互作用,全面了解喹诺酮类药物在细胞水平的作用机制。