Bolotin-Fukuhara M, Grivell L A
Laboratoire de Génétique Moléculaire, Université Paris-Sud, Orsay, France.
Antonie Van Leeuwenhoek. 1992 Aug;62(1-2):131-53. doi: 10.1007/BF00584467.
In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.
与大多数其他生物不同,酿酒酵母(Saccharomyces cerevisiae)在没有功能性线粒体的情况下也能存活。这种能力已被用于线粒体生物发生研究的遗传学方法中。在过去的二十年里,线粒体遗传学在鉴定线粒体基因组上的基因、绘制这些基因图谱以及建立它们所编码产物的结构-功能关系方面做出了重大贡献。与此同时,已经描述了200多个互补群,它们对应于线粒体功能或生物发生所需的同样多的核基因。后者中的许多基因是线粒体基因表达转录后事件所必需的,包括线粒体前体RNA的加工、线粒体mRNA的翻译,或者线粒体翻译产物组装到膜中。这篇综述的目的是描述用于揭示线粒体生物发生复杂性的遗传学方法,并总结从其应用中获得的最新见解。