Suppr超能文献

Histone H3 transcription in Saccharomyces cerevisiae is controlled by multiple cell cycle activation sites and a constitutive negative regulatory element.

作者信息

Freeman K B, Karns L R, Lutz K A, Smith M M

机构信息

Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908.

出版信息

Mol Cell Biol. 1992 Dec;12(12):5455-63. doi: 10.1128/mcb.12.12.5455-5463.1992.

Abstract

The promoters of the Saccharomyces cerevisiae histone H3 and H4 genes were examined for cis-acting DNA sequence elements regulating transcription and cell division cycle control. Deletion and linker disruption mutations identified two classes of regulatory elements: multiple cell cycle activation (CCA) sites and a negative regulatory site (NRS). Duplicate 19-bp CCA sites are present in both the copy I and copy II histone H3-H4 promoters arranged as inverted repeats separated by 45 and 68 bp. The CCA sites are both necessary and sufficient to activate transcription under cell division cycle control. A single CCA site provides cell cycle control but is a weak transcriptional activator, while an inverted repeat comprising two CCA sites provides both strong transcriptional activation and cell division cycle control. The NRS was identified in the copy I histone H3-H4 promoter. Deletion or disruption of the NRS increased the level of the histone H3 promoter activity but did not alter the cell division cycle periodicity of transcription. When the CCA sites were deleted from the histone promoter, the NRS element was unable to confer cell division cycle control on the remaining basal level of transcription. When the NRS element was inserted into the promoter of a foreign reporter gene, transcription was constitutively repressed and did not acquire cell cycle regulation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ee/360483/b554e22d1594/molcellb00135-0191-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验