Beis Konstantinos, Allard Simon T M, Hegeman Adrian D, Murshudov Garib, Philp Douglas, Naismith James H
Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom.
J Am Chem Soc. 2003 Oct 1;125(39):11872-8. doi: 10.1021/ja035796r.
The structure of Streptococcus suis serotype type 2 dTDP-d-glucose 4,6-dehydratase (RmlB) has been determined to 1.5 A resolution with its nicotinamide coenzyme and substrate analogue dTDP-xylose bound in an abortive complex. During enzyme turnover, NAD(+) abstracts a hydride from the C4' atom of dTDP-glucose-forming NADH. After elimination of water, hydride is then transferred back to the C6' atom of dTDP-4-keto-5,6-glucosene-regenerating NAD(+). Single-crystal spectroscopic studies unambiguously show that the coenzyme has been trapped as NADH in the crystal. Electron density clearly demonstrates that in contrast to native structures of RmlB where a flat nicotinamide ring is observed, the dihydropyridine ring of the reduced cofactor in this complex is found as a boat. The si face, from which the pro-S hydride is transferred, has a concave surface. Ab initio electronic structure calculations demonstrate that the presence of an internal hydrogen bond, between the amide NH on the nicotinamide ring and one of the oxygen atoms on a phosphate group, stabilizes this distorted conformation. Additionally, calculations show that the hydride donor ability of NADH is influenced by the degree of bending in the ring and may be influenced by an active-site tyrosine residue (Tyr 161). These results demonstrate the ability of dehydratase enzymes to fine-tune the redox potential of NADH through conformational changes in the nicotinamide ring.
猪链球菌2型dTDP - D - 葡萄糖4,6 - 脱水酶(RmlB)的结构已确定至1.5埃分辨率,其烟酰胺辅酶和底物类似物dTDP - 木糖结合在一个无效复合物中。在酶的周转过程中,NAD⁺从dTDP - 葡萄糖的C4'原子上夺取一个氢负离子形成NADH。在消除水之后,氢负离子随后又转移回dTDP - 4 - 酮 - 5,6 - 葡萄糖烯的C6'原子上,使NAD⁺再生。单晶光谱研究明确表明辅酶在晶体中已被捕获为NADH。电子密度清楚地表明,与观察到扁平烟酰胺环的RmlB天然结构相反,该复合物中还原型辅酶的二氢吡啶环呈船型。供体前S氢负离子转移的si面具有一个凹面。从头算电子结构计算表明,烟酰胺环上的酰胺NH与磷酸基团上的一个氧原子之间存在的一个内部氢键稳定了这种扭曲构象。此外,计算表明NADH的氢负离子供体能力受环的弯曲程度影响,并且可能受活性位点酪氨酸残基(Tyr 161)影响。这些结果证明了脱水酶通过烟酰胺环的构象变化来微调NADH氧化还原电位的能力。