Bhasin Manoj, Raghava G P S
Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India.
Hybrid Hybridomics. 2003 Aug;22(4):229-34. doi: 10.1089/153685903322328956.
The identification of peptides in an antigenic sequence that can bind with high affinity to a wide range of MHC alleles is one of the challenges in subunit vaccine design. The mutation of natural peptides is an alternative to obtaining peptides that can bind to a wide range of MHC alleles with high affinity. A large number of experiments are typically necessary to identify mutations that define high-affinity binding peptides. Therefore there is a need to develop a computational method for detecting amino acid mutations in a peptide for making it high-affinity or promiscuous MHC binders. This report describes a high-throughput computer driven solution for the identification of promiscuous and high-affinity mutated binders of 47 MHC class I alleles by introducing mutations in an antigenic sequence. The method implements quantitative matrices for creating optimal mutations in an antigenic sequence. It has two major options: (i) prediction of promiscuous MHC binders and (ii) prediction of high-affinity binders. In case of prediction of promiscuous binders, the server allows a user to select (i) permissible mutations in a peptide; (ii) MHC alleles to whom it should bind; and (iii) positions at which mutation is allowed. In the case of prediction of high-affinity binders, the server allows users to specify the positions that should be conserved in the native protein. In both cases, the method computes the type of mutations and position of mutations in 9-mer peptides required to have the desired results. The web server MMBPred is available at www.imtech.res.in/raghava/mmbpred/.
鉴定抗原序列中能够与多种MHC等位基因高亲和力结合的肽段是亚单位疫苗设计中的挑战之一。天然肽的突变是获得能够与多种MHC等位基因高亲和力结合的肽段的一种替代方法。通常需要大量实验来鉴定定义高亲和力结合肽的突变。因此,需要开发一种计算方法来检测肽段中的氨基酸突变,使其成为高亲和力或多特异性MHC结合物。本报告描述了一种高通量计算机驱动的解决方案,通过在抗原序列中引入突变来鉴定47种I类MHC等位基因的多特异性和高亲和力突变结合物。该方法采用定量矩阵在抗原序列中产生最佳突变。它有两个主要选项:(i)预测多特异性MHC结合物和(ii)预测高亲和力结合物。在预测多特异性结合物的情况下,服务器允许用户选择(i)肽段中允许的突变;(ii)它应结合的MHC等位基因;以及(iii)允许突变的位置。在预测高亲和力结合物的情况下,服务器允许用户指定天然蛋白质中应保守的位置。在这两种情况下,该方法都会计算出9肽中产生预期结果所需的突变类型和突变位置。网络服务器MMBPred可在www.imtech.res.in/raghava/mmbpred/上获取。