Kiebel Stefan J, Glaser Daniel E, Friston Karl J
Wellcome Department of Imaging Neuroscience, Institute of Neurology, 12 Queen Square, London WCIN 3BG, UK.
Neuroimage. 2003 Sep;20(1):591-600. doi: 10.1016/s1053-8119(03)00308-2.
In neuroimaging, data are often modeled using general linear models. Here, we focus on GLMs with error covariances which are modeled as a linear combination of multiple variance/covariance components. Each of these components is weighted by one variance parameter. In many analyses variance parameters are estimated using restricted maximum likelihood (ReML). Most classical approaches assume the error covariance matrix can be factorized into a single variance parameter and a nonspherical correlation matrix. In this context, the F test based on a single variance parameter, with a suitable correction to the degrees of freedom, is the standard inference tool. This correction can also be adapted to models with multiple variance parameters. However, this extension overlooks the uncertainty about the variance parameter estimates and P values tend to be underestimated. Here, we show how one can overcome this problem to render the F test more exact. This issue is important, because serial correlations in fMRI time series are generally modeled using multiple variance parameters. Another application is to hierarchical linear models, which are used for modeling multisubject data. To illustrate our approach, we apply it to some typical modeling scenarios in fMRI data analysis.
在神经影像学中,数据通常使用一般线性模型进行建模。在此,我们关注具有误差协方差的广义线性模型,其中误差协方差被建模为多个方差/协方差分量的线性组合。这些分量中的每一个都由一个方差参数加权。在许多分析中,方差参数使用限制最大似然法(ReML)进行估计。大多数经典方法假设误差协方差矩阵可以分解为单个方差参数和一个非球形相关矩阵。在这种情况下,基于单个方差参数并对自由度进行适当校正的F检验是标准的推断工具。这种校正也可以适用于具有多个方差参数的模型。然而,这种扩展忽略了方差参数估计的不确定性,P值往往被低估。在此,我们展示了如何克服这个问题以使F检验更精确。这个问题很重要,因为功能磁共振成像(fMRI)时间序列中的序列相关性通常使用多个方差参数进行建模。另一个应用是分层线性模型,它用于对多主体数据进行建模。为了说明我们的方法,我们将其应用于fMRI数据分析中的一些典型建模场景。