Scientific and Statistical Computing Core, NIMH/NIH/DHHS, 9000 Rockville Pike, Bethesda, MD 20892, USA.
Neuroimage. 2012 Mar;60(1):747-65. doi: 10.1016/j.neuroimage.2011.12.060. Epub 2011 Dec 30.
Conventional functional magnetic resonance imaging (FMRI) group analysis makes two key assumptions that are not always justified. First, the data from each subject is condensed into a single number per voxel, under the assumption that within-subject variance for the effect of interest is the same across all subjects or is negligible relative to the cross-subject variance. Second, it is assumed that all data values are drawn from the same Gaussian distribution with no outliers. We propose an approach that does not make such strong assumptions, and present a computationally efficient frequentist approach to FMRI group analysis, which we term mixed-effects multilevel analysis (MEMA), that incorporates both the variability across subjects and the precision estimate of each effect of interest from individual subject analyses. On average, the more accurate tests result in higher statistical power, especially when conventional variance assumptions do not hold, or in the presence of outliers. In addition, various heterogeneity measures are available with MEMA that may assist the investigator in further improving the modeling. Our method allows group effect t-tests and comparisons among conditions and among groups. In addition, it has the capability to incorporate subject-specific covariates such as age, IQ, or behavioral data. Simulations were performed to illustrate power comparisons and the capability of controlling type I errors among various significance testing methods, and the results indicated that the testing statistic we adopted struck a good balance between power gain and type I error control. Our approach is instantiated in an open-source, freely distributed program that may be used on any dataset stored in the universal neuroimaging file transfer (NIfTI) format. To date, the main impediment for more accurate testing that incorporates both within- and cross-subject variability has been the high computational cost. Our efficient implementation makes this approach practical. We recommend its use in lieu of the less accurate approach in the conventional group analysis.
传统的功能磁共振成像(FMRI)组分析有两个关键假设,但这些假设并不总是成立的。首先,假设每个被试的数据在体素水平上可以被压缩为一个单一的数值,即感兴趣效应的个体内方差在所有被试中是相同的,或者相对于个体间方差可以忽略不计。其次,假设所有数据值都来自同一个没有异常值的高斯分布。我们提出了一种不做这种强假设的方法,并提出了一种计算效率高的基于频率主义的 FMRI 组分析方法,我们称之为混合效应多层次分析(MEMA),它结合了个体间的变异性和从个体分析中获得的每个感兴趣效应的精度估计。平均而言,更准确的检验会导致更高的统计功效,尤其是在传统方差假设不成立或存在异常值的情况下。此外,MEMA 还提供了各种异质性度量,可以帮助研究者进一步改进模型。我们的方法允许进行组效应 t 检验以及条件之间和组之间的比较。此外,它还具有纳入特定于个体的协变量(如年龄、智商或行为数据)的能力。模拟结果表明,我们采用的检验统计量在获得功效增益和控制各种显著性检验方法的 I 型错误之间取得了良好的平衡。我们的方法在一个开源的、免费分发的程序中实现,可以在任何以通用神经影像学文件传输(NIfTI)格式存储的数据集上使用。到目前为止,纳入个体内和个体间变异性的更准确检验的主要障碍一直是高计算成本。我们的高效实现使这种方法变得实用。我们建议在传统的组分析中使用更准确的方法代替不太准确的方法。