Suppr超能文献

功能磁共振成像(fMRI)组分析结合了效应估计值及其方差。

FMRI group analysis combining effect estimates and their variances.

机构信息

Scientific and Statistical Computing Core, NIMH/NIH/DHHS, 9000 Rockville Pike, Bethesda, MD 20892, USA.

出版信息

Neuroimage. 2012 Mar;60(1):747-65. doi: 10.1016/j.neuroimage.2011.12.060. Epub 2011 Dec 30.

Abstract

Conventional functional magnetic resonance imaging (FMRI) group analysis makes two key assumptions that are not always justified. First, the data from each subject is condensed into a single number per voxel, under the assumption that within-subject variance for the effect of interest is the same across all subjects or is negligible relative to the cross-subject variance. Second, it is assumed that all data values are drawn from the same Gaussian distribution with no outliers. We propose an approach that does not make such strong assumptions, and present a computationally efficient frequentist approach to FMRI group analysis, which we term mixed-effects multilevel analysis (MEMA), that incorporates both the variability across subjects and the precision estimate of each effect of interest from individual subject analyses. On average, the more accurate tests result in higher statistical power, especially when conventional variance assumptions do not hold, or in the presence of outliers. In addition, various heterogeneity measures are available with MEMA that may assist the investigator in further improving the modeling. Our method allows group effect t-tests and comparisons among conditions and among groups. In addition, it has the capability to incorporate subject-specific covariates such as age, IQ, or behavioral data. Simulations were performed to illustrate power comparisons and the capability of controlling type I errors among various significance testing methods, and the results indicated that the testing statistic we adopted struck a good balance between power gain and type I error control. Our approach is instantiated in an open-source, freely distributed program that may be used on any dataset stored in the universal neuroimaging file transfer (NIfTI) format. To date, the main impediment for more accurate testing that incorporates both within- and cross-subject variability has been the high computational cost. Our efficient implementation makes this approach practical. We recommend its use in lieu of the less accurate approach in the conventional group analysis.

摘要

传统的功能磁共振成像(FMRI)组分析有两个关键假设,但这些假设并不总是成立的。首先,假设每个被试的数据在体素水平上可以被压缩为一个单一的数值,即感兴趣效应的个体内方差在所有被试中是相同的,或者相对于个体间方差可以忽略不计。其次,假设所有数据值都来自同一个没有异常值的高斯分布。我们提出了一种不做这种强假设的方法,并提出了一种计算效率高的基于频率主义的 FMRI 组分析方法,我们称之为混合效应多层次分析(MEMA),它结合了个体间的变异性和从个体分析中获得的每个感兴趣效应的精度估计。平均而言,更准确的检验会导致更高的统计功效,尤其是在传统方差假设不成立或存在异常值的情况下。此外,MEMA 还提供了各种异质性度量,可以帮助研究者进一步改进模型。我们的方法允许进行组效应 t 检验以及条件之间和组之间的比较。此外,它还具有纳入特定于个体的协变量(如年龄、智商或行为数据)的能力。模拟结果表明,我们采用的检验统计量在获得功效增益和控制各种显著性检验方法的 I 型错误之间取得了良好的平衡。我们的方法在一个开源的、免费分发的程序中实现,可以在任何以通用神经影像学文件传输(NIfTI)格式存储的数据集上使用。到目前为止,纳入个体内和个体间变异性的更准确检验的主要障碍一直是高计算成本。我们的高效实现使这种方法变得实用。我们建议在传统的组分析中使用更准确的方法代替不太准确的方法。

相似文献

1
FMRI group analysis combining effect estimates and their variances.
Neuroimage. 2012 Mar;60(1):747-65. doi: 10.1016/j.neuroimage.2011.12.060. Epub 2011 Dec 30.
3
Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model.
Neuroimage. 2014 Oct 1;99:571-88. doi: 10.1016/j.neuroimage.2014.06.027. Epub 2014 Jun 17.
4
To pool or not to pool: Can we ignore cross-trial variability in FMRI?
Neuroimage. 2021 Jan 15;225:117496. doi: 10.1016/j.neuroimage.2020.117496. Epub 2020 Oct 24.
5
Linear mixed-effects modeling approach to FMRI group analysis.
Neuroimage. 2013 Jun;73:176-90. doi: 10.1016/j.neuroimage.2013.01.047. Epub 2013 Jan 30.
6
Intraclass correlation: Improved modeling approaches and applications for neuroimaging.
Hum Brain Mapp. 2018 Mar;39(3):1187-1206. doi: 10.1002/hbm.23909. Epub 2017 Dec 7.
7
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.
8
Nonparametric permutation tests for functional neuroimaging: a primer with examples.
Hum Brain Mapp. 2002 Jan;15(1):1-25. doi: 10.1002/hbm.1058.
9
Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses.
J Neurosci Methods. 2002 Aug 30;118(2):115-28. doi: 10.1016/s0165-0270(02)00121-8.
10
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Neuroimage. 2018 Jul 1;174:111-126. doi: 10.1016/j.neuroimage.2018.02.060. Epub 2018 Mar 7.

引用本文的文献

2
Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation.
iScience. 2024 Dec 4;28(1):111531. doi: 10.1016/j.isci.2024.111531. eCollection 2025 Jan 17.
3
When group grievances become personal: The neural correlates of group and personal rejection.
Cogn Affect Behav Neurosci. 2025 Jan 7. doi: 10.3758/s13415-024-01257-x.
4
Increased heterogeneity and task-related reconfiguration of functional connectivity during a lexicosemantic task in autism.
Neuroimage Clin. 2024;44:103694. doi: 10.1016/j.nicl.2024.103694. Epub 2024 Oct 28.
5
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00057. Epub 2024 Jan 5.
6
Exploring the Utility of a Functional Magnetic Resonance Imaging Cannabis Cue-Reactivity Paradigm in Treatment-Seeking Adults With Cannabis Use Disorder.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 May;10(5):522-530. doi: 10.1016/j.bpsc.2024.09.006. Epub 2024 Sep 24.
7
Graspable foods and tools elicit similar responses in visual cortex.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae383.
8
The neural dynamics associated with computational complexity.
PLoS Comput Biol. 2024 Sep 23;20(9):e1012447. doi: 10.1371/journal.pcbi.1012447. eCollection 2024 Sep.
9
Precision fMRI and cluster-failure in the individual brain.
Hum Brain Mapp. 2024 Aug 15;45(12):e26813. doi: 10.1002/hbm.26813.
10
Iterative Data-adaptive Autoregressive (IDAR) whitening procedure for long and short TR fMRI.
Front Neurosci. 2024 Aug 2;18:1381722. doi: 10.3389/fnins.2024.1381722. eCollection 2024.

本文引用的文献

1
Psychopathic tendencies and mesolimbic recruitment by cues for instrumental and passively obtained rewards.
Biol Psychol. 2012 Feb;89(2):408-15. doi: 10.1016/j.biopsycho.2011.12.003. Epub 2011 Dec 15.
2
Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans.
J Neurosci. 2011 Sep 7;31(36):12855-65. doi: 10.1523/JNEUROSCI.1457-11.2011.
3
Estimating and testing variance components in a multi-level GLM.
Neuroimage. 2012 Jan 2;59(1):490-501. doi: 10.1016/j.neuroimage.2011.07.077. Epub 2011 Jul 31.
4
A normalization model of multisensory integration.
Nat Neurosci. 2011 Jun;14(6):775-82. doi: 10.1038/nn.2815. Epub 2011 May 8.
5
Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech.
J Neurosci. 2011 Feb 2;31(5):1704-14. doi: 10.1523/JNEUROSCI.4853-10.2011.
7
Simple group fMRI modeling and inference.
Neuroimage. 2009 Oct 1;47(4):1469-75. doi: 10.1016/j.neuroimage.2009.05.034. Epub 2009 May 20.
8
A new approach to outliers in meta-analysis.
Health Care Manag Sci. 2008 Jun;11(2):121-31. doi: 10.1007/s10729-007-9041-8.
9
Robust group analysis using outlier inference.
Neuroimage. 2008 Jun;41(2):286-301. doi: 10.1016/j.neuroimage.2008.02.042. Epub 2008 Mar 6.
10
Hypothesis tests for population heterogeneity in meta-analysis.
Br J Math Stat Psychol. 2007 May;60(Pt 1):29-60. doi: 10.1348/000711005X64042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验