Meiler Jens, Baker David
Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195-7350, USA.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12105-10. doi: 10.1073/pnas.1831973100. Epub 2003 Oct 3.
The strong coupling between secondary and tertiary structure formation in protein folding is neglected in most structure prediction methods. In this work we investigate the extent to which nonlocal interactions in predicted tertiary structures can be used to improve secondary structure prediction. The architecture of a neural network for secondary structure prediction that utilizes multiple sequence alignments was extended to accept low-resolution nonlocal tertiary structure information as an additional input. By using this modified network, together with tertiary structure information from native structures, the Q3-prediction accuracy is increased by 7-10% on average and by up to 35% in individual cases for independent test data. By using tertiary structure information from models generated with the ROSETTA de novo tertiary structure prediction method, the Q3-prediction accuracy is improved by 4-5% on average for small and medium-sized single-domain proteins. Analysis of proteins with particularly large improvements in secondary structure prediction using tertiary structure information provides insight into the feedback from tertiary to secondary structure.
在大多数结构预测方法中,蛋白质折叠过程中二级结构和三级结构形成之间的强耦合被忽略了。在这项工作中,我们研究了预测三级结构中的非局部相互作用可用于改善二级结构预测的程度。一个利用多序列比对进行二级结构预测的神经网络架构被扩展,以接受低分辨率的非局部三级结构信息作为额外输入。通过使用这个经过修改的网络,结合来自天然结构的三级结构信息,对于独立测试数据,Q3预测准确率平均提高了7% - 10%,个别情况下提高了35%。通过使用来自用ROSETTA从头三级结构预测方法生成的模型的三级结构信息,对于中小型单结构域蛋白质,Q3预测准确率平均提高了4% - 5%。对使用三级结构信息在二级结构预测方面有特别大改进的蛋白质进行分析,有助于深入了解从三级结构到二级结构的反馈。