Suppr超能文献

产甲烷古菌的赖氨酸-2,3-氨基变位酶和β-赖氨酸乙酰转移酶基因受盐诱导,对于Nε-乙酰-β-赖氨酸的生物合成以及在高盐度下生长至关重要。

Lysine-2,3-aminomutase and beta-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Nepsilon-acetyl-beta-lysine and growth at high salinity.

作者信息

Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V

机构信息

Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, 80638 Munich, Germany.

出版信息

Appl Environ Microbiol. 2003 Oct;69(10):6047-55. doi: 10.1128/AEM.69.10.6047-6055.2003.

Abstract

The compatible solute N(epsilon)-acetyl-beta-lysine is unique to methanogenic archaea and is produced under salt stress only. However, the molecular basis for the salt-dependent regulation of N(epsilon)-acetyl-beta-lysine formation is unknown. Genes potentially encoding lysine-2,3-aminomutase (ablA) and beta-lysine acetyltransferase (ablB), which are assumed to catalyze N(epsilon)-acetyl-beta-lysine formation from alpha-lysine, were identified on the chromosomes of the methanogenic archaea Methanosarcina mazei Gö1, Methanosarcina acetivorans, Methanosarcina barkeri, Methanococcus jannaschii, and Methanococcus maripaludis. The order of the two genes was identical in the five organisms, and the deduced proteins were very similar, indicating a high degree of conservation of structure and function. Northern blot analysis revealed that the two genes are organized in an operon (termed the abl operon) in M. mazei Gö1. Expression of the abl operon was strictly salt dependent. The abl operon was deleted in the genetically tractable M. maripaludis. Delta(abl) mutants of M. maripaludis no longer produced N(epsilon)-acetyl-beta-lysine and were incapable of growth at high salt concentrations, indicating that the abl operon is essential for N(epsilon)-acetyl-beta-lysine synthesis. These experiments revealed the first genes involved in the biosynthesis of compatible solutes in methanogens.

摘要

相容性溶质N(ε)-乙酰-β-赖氨酸是产甲烷古菌所特有的,且仅在盐胁迫下产生。然而,N(ε)-乙酰-β-赖氨酸形成的盐依赖性调控的分子基础尚不清楚。在产甲烷古菌马氏甲烷八叠球菌Gö1、嗜乙酸甲烷八叠球菌、巴氏甲烷八叠球菌、詹氏甲烷球菌和沼泽甲烷球菌的染色体上,鉴定出了可能编码赖氨酸-2,3-氨基变位酶(ablA)和β-赖氨酸乙酰转移酶(ablB)的基因,这两种酶被认为可催化由α-赖氨酸形成N(ε)-乙酰-β-赖氨酸。这两个基因在这五种生物中的排列顺序相同,推导的蛋白质也非常相似,表明其结构和功能具有高度保守性。Northern印迹分析显示,这两个基因在马氏甲烷八叠球菌Gö1中组成一个操纵子(称为abl操纵子)。abl操纵子的表达严格依赖于盐。在遗传上易于操作的沼泽甲烷球菌中删除了abl操纵子。沼泽甲烷球菌的Δ(abl)突变体不再产生N(ε)-乙酰-β-赖氨酸,并且在高盐浓度下无法生长,这表明abl操纵子对于N(ε)-乙酰-β-赖氨酸的合成至关重要。这些实验揭示了产甲烷菌中首个参与相容性溶质生物合成的基因。

相似文献

4
Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl.
Biochim Biophys Acta. 2001 Nov 15;1524(1):1-10. doi: 10.1016/s0304-4165(00)00131-8.
6
Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1.
Appl Environ Microbiol. 2002 May;68(5):2133-9. doi: 10.1128/AEM.68.5.2133-2139.2002.
7
Studying gene regulation in methanogenic archaea.
Methods Enzymol. 2011;494:91-110. doi: 10.1016/B978-0-12-385112-3.00005-6.
8
The molecular basis of salt adaptation in Methanosarcina mazei Gö1.
Arch Microbiol. 2008 Sep;190(3):271-9. doi: 10.1007/s00203-008-0363-9. Epub 2008 Apr 1.
9
Transcriptional regulation of methanogenic metabolism in archaea.
Curr Opin Microbiol. 2021 Apr;60:8-15. doi: 10.1016/j.mib.2021.01.005. Epub 2021 Feb 6.

引用本文的文献

2
Decoding Microbial Responses to Ammonia Shock Loads in Biogas Reactors through Metagenomics and Metatranscriptomics.
Environ Sci Technol. 2024 Jan 9;58(1):591-602. doi: 10.1021/acs.est.3c07840. Epub 2023 Dec 19.
3
Highlighting the Unique Roles of Radical -Adenosylmethionine Enzymes in Methanogenic Archaea.
J Bacteriol. 2022 Aug 16;204(8):e0019722. doi: 10.1128/jb.00197-22. Epub 2022 Jul 26.
4
Na riboswitches regulate genes for diverse physiological processes in bacteria.
Nat Chem Biol. 2022 Aug;18(8):878-885. doi: 10.1038/s41589-022-01086-4. Epub 2022 Jul 25.
5
Functional Insights of Salinity Stress-Related Pathways in Metagenome-Resolved Genomes.
Appl Environ Microbiol. 2022 May 24;88(10):e0244921. doi: 10.1128/aem.02449-21. Epub 2022 Apr 28.
6
Identification and characterization of a novel GNAT superfamily N -acetyltransferase from Salinicoccus halodurans H3B36.
Microb Biotechnol. 2022 May;15(5):1652-1665. doi: 10.1111/1751-7915.13998. Epub 2022 Jan 5.
8
EPS Glycoconjugate Profiles Shift as Adaptive Response in Anaerobic Microbial Granulation at High Salinity.
Front Microbiol. 2018 Jul 2;9:1423. doi: 10.3389/fmicb.2018.01423. eCollection 2018.
9
Methanogens: biochemical background and biotechnological applications.
AMB Express. 2018 Jan 4;8(1):1. doi: 10.1186/s13568-017-0531-x.

本文引用的文献

1
Molecular biology of osmoregulation.
Science. 1984 Jun 8;224(4653):1064-8. doi: 10.1126/science.224.4653.1064.
2
Effects of Osmolyte Precursors on the Distribution of Compatible Solutes in Methanohalophilus portucalensis.
Appl Environ Microbiol. 1997 Oct;63(10):4032-8. doi: 10.1128/aem.63.10.4032-4038.1997.
3
Organic solutes in hyperthermophilic archaea.
Appl Environ Microbiol. 1997 Mar;63(3):896-902. doi: 10.1128/aem.63.3.896-902.1997.
5
Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature.
Appl Environ Microbiol. 1995 Sep;61(9):3299-303. doi: 10.1128/aem.61.9.3299-3303.1995.
6
Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus.
Appl Environ Microbiol. 1994 Oct;60(10):3660-4. doi: 10.1128/aem.60.10.3660-3664.1994.
7
Composition, Variation, and Dynamics of Major Osmotic Solutes in Methanohalophilus Strain FDF1.
Appl Environ Microbiol. 1992 Aug;58(8):2438-43. doi: 10.1128/aem.58.8.2438-2443.1992.
8
Adaptations to Environmental Stresses.
Plant Cell. 1995 Jul;7(7):1099-1111. doi: 10.1105/tpc.7.7.1099.
9
Compatible solutes of organisms that live in hot saline environments.
Environ Microbiol. 2002 Sep;4(9):501-9. doi: 10.1046/j.1462-2920.2002.00335.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验