Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae137.
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.
气候变化导致海平面上升威胁淡水生态系统,并在微生物组中引发盐度胁迫。这些系统中的甲烷排放主要被甲烷氧化微生物所缓解。在这里,我们描述了淡水甲烷营养型古菌对盐胁迫的生理和代谢反应。在我们的微宇宙实验中,甲烷营养型古菌的抑制作用始于 1%。然而,在 12 周内,通过在反应器中逐渐增加盐度至 3%,该培养物仍继续氧化甲烷。通过基因表达谱和代谢组学,我们确定了一条盐胁迫反应途径,该途径产生了厌氧甲烷营养型古菌的渗透压调节剂:N(ε)-乙酰-β-L-赖氨酸。对产生 N(ε)-乙酰-β-L-赖氨酸的酶的广泛系统发育基因组学分析表明,它们广泛存在于细菌和古菌中,这表明存在潜在的水平基因转移和与 BORG 染色体外元件的联系。生物反应器生物量的物理化学分析进一步表明,在盐胁迫期间,厌氧甲烷营养菌存在唾液酸和细胞内聚羟基烷酸的消耗。