Tweed D, Fetter M, Andreadaki S, Koenig E, Dichgans J
Department of Neurology, University of Tübingen, Fed. Rep. Germany.
Vision Res. 1992 Jul;32(7):1225-38. doi: 10.1016/0042-6989(92)90217-7.
For any given location and velocity of a point target, there are infinitely many different eye velocities that the pursuit system could use to track the target perfectly. Three-dimensional recordings of eye position and velocity in 8 normal human subjects showed that the system chooses the unique tracking velocity that keeps eye position vectors (a particular mathematical representation of three-dimensional eye orientation) confined to a single plane, i.e. pursuit obeys Listing's law. One advantage of this strategy over other possible ones, such as choosing the smallest eye velocity compatible with perfect tracking, is that it permits continuous pursuit without accumulation of ocular torsion. For nonpoint targets, there is at most one eye velocity compatible with perfect retinal image stabilisation, and the optimal velocity may not fit Listing's law; we observed small but consistent deviations from the law during pursuit of rotating line targets.
对于点目标的任何给定位置和速度,追踪系统都可以使用无数种不同的眼球速度来完美追踪目标。对8名正常人类受试者的眼球位置和速度进行的三维记录表明,该系统会选择独特的追踪速度,使眼球位置向量(三维眼球方向的一种特定数学表示)限制在单个平面内,即追踪遵循利斯廷定律。与其他可能的策略相比,例如选择与完美追踪兼容的最小眼球速度,这种策略的一个优点是它允许连续追踪而不会积累眼球扭转。对于非点目标,最多只有一种眼球速度与完美的视网膜图像稳定兼容,并且最佳速度可能不符合利斯廷定律;我们在追踪旋转线条目标时观察到与该定律存在微小但一致的偏差。