Suppr超能文献

注视过程中的双眼眼位方向:拓展至包括眼聚散的Listing定律

Binocular eye orientation during fixations: Listing's law extended to include eye vergence.

作者信息

Van Rijn L J, Van den Berg A V

机构信息

Department of Physiology I, Medical Faculty, Erasmus University, Rotterdam, The Netherlands.

出版信息

Vision Res. 1993 Mar-Apr;33(5-6):691-708. doi: 10.1016/0042-6989(93)90189-4.

Abstract

Any eye position can be reached from a position called the primary position by rotation about a single axis. Listing's law states that for targets at optical infinity all rotation axes form a plane; the so-called Listing plane. Listing's law is not valid for fixation of nearby targets. To document these deviations of Listing's law we studied binocular eye positions during fixations of point targets in the dark. We tested both symmetric (targets in a sagittal plane) and asymmetric vergence conditions. For upward fixation both eyes showed intorsion relative to the position that would have been taken if each eye followed Listing's law. For downward fixation we found extorsion. The in- or extorsion increased approximately linearly with the vergence angle. The direction of the Listing axis and the turn angle about this axis can be described by rotation vectors. Our observations indicate that for fixation of nearby targets the rotation vectors of the two eyes become different and are no longer located in a single plane. However, we find that it is possible to decomose the rotation vector of each eye into the sum of a symmetric and an anti-symmetric part, each with its own properties. (1) The symmetric part is associated with eye version. This component of the rotation vector is identical for both eyes and lies in Listing's plane. In contrast to the classical form of Listing's law, this part of the rotation vector lies in Listing's plane irrespective of the fixation distance. (2) The anti-symmetric part of the rotation vector is related to eye vergence. This component is of equal magnitude but oppositely directed in each eye. The anti-symmetric part lies in the mid-sagittal plane, also irrespective of fixation distance. For fixation of targets at optical infinity the anti-symmetric part equals zero and the eye positions obey the classical form of Listing's law. Thus, the symmetric and anti-symmetric parts of the rotation vectors are restricted to two perpendicular planes. Combining these restrictions in a model, with the additional restriction that the vertical vergence equals zero during fixation of point targets, we arrive at the prediction that the cyclovergence is proportional to the product of elevation and horizontal vergence angles. This was well born out by the data. The model allows to describe the binocular eye position for fixation of any target position in terms of the bipolar coordinates of the target only (i.e. using only three degrees of freedom instead of the six needed for two eyes).

摘要

通过围绕单一轴旋转,可从一个称为初始位置的位置到达任何眼位。利斯廷定律指出,对于光学无限远处的目标,所有旋转轴形成一个平面,即所谓的利斯廷平面。利斯廷定律对于注视近处目标无效。为了记录利斯廷定律的这些偏差,我们研究了在黑暗中注视点目标时的双眼眼位。我们测试了对称(目标位于矢状面)和不对称聚散条件。对于向上注视,相对于每只眼睛遵循利斯廷定律时所采取的位置,双眼均表现出内旋。对于向下注视,我们发现有外旋。内旋或外旋随聚散角近似线性增加。利斯廷轴的方向和绕该轴的转角可用旋转向量来描述。我们的观察表明,对于注视近处目标,两只眼睛的旋转向量变得不同,且不再位于单个平面内。然而,我们发现可以将每只眼睛的旋转向量分解为对称部分和反对称部分的和,每个部分都有其自身的特性。(1)对称部分与眼的同向运动有关。旋转向量的这一组成部分在两只眼睛中是相同的,且位于利斯廷平面内。与利斯廷定律的经典形式不同,旋转向量的这一部分无论注视距离如何都位于利斯廷平面内。(2)旋转向量的反对称部分与眼的聚散有关。这一组成部分在每只眼睛中的大小相等但方向相反。反对称部分位于正中矢状面内,同样与注视距离无关。对于注视光学无限远处的目标,反对称部分等于零,眼位遵循利斯廷定律的经典形式。因此,旋转向量的对称部分和反对称部分被限制在两个相互垂直的平面内。将这些限制结合到一个模型中,再加上在注视点目标时垂直聚散等于零这一额外限制,我们得出预测,即旋转性聚散与仰角和水平聚散角的乘积成正比。这一点在数据中得到了很好的证实。该模型允许仅根据目标的双极坐标(即仅使用三个自由度而非两只眼睛所需的六个自由度)来描述注视任何目标位置时的双眼眼位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验