Ma Junshui, Theiler James, Perkins Simon
Aureon Biosciences Corp., 28 Wells St., Yonkers, NY 10701, USA.
Neural Comput. 2003 Nov;15(11):2683-703. doi: 10.1162/089976603322385117.
Batch implementations of support vector regression (SVR) are inefficient when used in an on-line setting because they must be retrained from scratch every time the training set is modified. Following an incremental support vector classification algorithm introduced by Cauwenberghs and Poggio (2001), we have developed an accurate on-line support vector regression (AOSVR) that efficiently updates a trained SVR function whenever a sample is added to or removed from the training set. The updated SVR function is identical to that produced by a batch algorithm. Applications of AOSVR in both on-line and cross-validation scenarios are presented. In both scenarios, numerical experiments indicate that AOSVR is faster than batch SVR algorithms with both cold and warm start.
支持向量回归(SVR)的批量实现方式在在线环境中使用时效率低下,因为每当训练集被修改时,它们都必须从头重新训练。在Cauwenberghs和Poggio(2001年)提出的增量支持向量分类算法的基础上,我们开发了一种精确的在线支持向量回归(AOSVR),每当有样本添加到训练集或从训练集中移除时,它都能有效地更新训练好的SVR函数。更新后的SVR函数与批量算法产生的函数相同。本文展示了AOSVR在在线和交叉验证场景中的应用。在这两种场景中,数值实验表明,无论是冷启动还是热启动,AOSVR都比批量SVR算法更快。