Suppr超能文献

使用递归神经网络预测行人运动:人群监测数据的应用。

Forecasting Pedestrian Movements Using Recurrent Neural Networks: An Application of Crowd Monitoring Data.

机构信息

Transport & Planning, Delft University of Technology, 2628 CN Delft, The Netherlands.

School of Civil Engineering, The University of Queensland, Brisbane St. Lucia, QLD 4072, Australia.

出版信息

Sensors (Basel). 2019 Jan 18;19(2):382. doi: 10.3390/s19020382.

Abstract

Currently, effective crowd management based on the information provided by crowd monitoring systems is difficult as this information comes in at the moment adverse crowd movements are already occurring. Up to this moment, very little forecasting techniques have been developed that predict crowd flows a longer time period ahead. Moreover, most contemporary state estimation methods apply demanding pre-processing steps, such as map-matching. The objective of this paper is to design, train and benchmark a data-driven procedure to forecast crowd movements, which can in real-time predict crowd movement. This procedure entails two steps. The first step comprises of a cell sequence derivation method that allows the representation of spatially continuous GPS traces in terms of discrete cell sequences. The second step entails the training of a Recursive Neural Network (RNN) with a Gated Recurrent Unit (GRU) and six benchmark models to forecast the next location of pedestrians. The RNN-GRU is found to outperform the other tested models. Some additional tests of the ability of the RNN-GRU to forecast illustrate that the RNN-GRU preserves its predictive power when a limited amount of data is used from the first few hours of a multi-day event and temporal information is incorporated in the cell sequences.

摘要

目前,基于人群监测系统提供的信息进行有效的人群管理是困难的,因为这些信息是在人群出现不利流动时才提供的。到目前为止,很少有预测技术可以预测更长时间的人群流动。此外,大多数当代的状态估计方法都需要进行诸如地图匹配等苛刻的预处理步骤。本文的目的是设计、训练和基准测试一种数据驱动的程序,以预测人群流动,从而可以实时预测人群流动。该程序包含两个步骤。第一步包括一个单元序列推导方法,该方法允许将空间连续的 GPS 轨迹表示为离散的单元序列。第二步包括使用门控循环单元 (GRU) 训练递归神经网络 (RNN) 和六个基准模型,以预测行人的下一个位置。发现 RNN-GRU 优于其他测试模型。对 RNN-GRU 预测能力的一些额外测试表明,当从多日事件的前几个小时使用有限数量的数据并且在单元序列中包含时间信息时,RNN-GRU 保留其预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验