Suppr超能文献

从头设计的短肽中由Glu-...Lys+盐桥实现的螺旋稳定作用。

Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.

作者信息

Marqusee S, Baldwin R L

机构信息

Department of Biochemistry, Stanford University Medical Center, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898-902. doi: 10.1073/pnas.84.24.8898.

Abstract

Four alanine-based peptides were designed, synthesized, and tested by circular dichroism for alpha-helix formation in H2O. Each peptide has three glutamic/lysine residue pairs, is 16 or 17 amino acids long, and has blocked alpha-NH2 and alpha-COOH groups. In one set of peptides ("i+4"), the glutamic and lysine residues are spaced 4 residues or 1 residue apart. In the other set ("i+3"), the spacing is 3 or 2 residues. Within each of these sets, a pair of peptides was made in which the positions of the glutamic and lysine residues are reversed [Glu, Lys (E,K) vs. Lys, Glu (K,E)] in order to assess the interaction of the charged side chains with the helix dipole. Since the amino acid compositions of these peptides differ at most by a single alanine residue, differences in helicity are caused chiefly by the spacing and positions of the charged residues. The basic aim of this study was to test for helix stabilization by (Glu-, Lys+) ion pairs or salt bridges (H-bonded ion pairs). The results are as follows. (i) All four peptides show significant helix formation, and the stability of the alpha-helix does not depend on peptide concentration in the range studied. The best helix-former is (i+4)E,K, which shows approximately 80% helicity in 0.01 M NaCl at pH 7 and 0 degree C. (ii) The two i+4 peptides show more helix formation than the i+3 peptides. pH titration gives no evidence for helix stabilization by i+3 ion pairs. (iii) Surprisingly, the i+4 peptides form more stable helices than the i+3 peptides at extremes of pH (pH 2 and pH 12) as well as at pH 7. These results may be explained by helix stabilization through Glu-...Lys+ salt bridges at pH 7 and singly charged H bonds at pH 2 (Glu0...Lys+) and pH 12 (Glu-...Lys0). The reason why these links stabilize the alpha-helix more effectively in the i+4 than in the i+3 peptides is not known. (iv) Reversal of the positions of glutamic and lysine residues usually affects helix stability in the manner expected for interaction of these charged groups with the helix dipole. (v) alpha-Helix formation in these alanine-based peptides is enthalpy-driven, as is helix formation by the C-peptide of ribonuclease A.

摘要

设计、合成了四种基于丙氨酸的肽,并通过圆二色性检测其在水中形成α-螺旋的情况。每种肽都有三对谷氨酸/赖氨酸残基,长度为16或17个氨基酸,且α-NH2和α-COOH基团被封闭。在一组肽(“i + 4”)中,谷氨酸和赖氨酸残基相隔4个残基或1个残基。在另一组(“i + 3”)中,间隔为3个或2个残基。在每组中,制备了一对肽,其中谷氨酸和赖氨酸残基的位置颠倒[谷氨酸,赖氨酸(E,K)对赖氨酸,谷氨酸(K,E)],以评估带电侧链与螺旋偶极子的相互作用。由于这些肽的氨基酸组成最多相差一个丙氨酸残基,螺旋度的差异主要由带电残基的间隔和位置引起。本研究的基本目的是测试(谷氨酸 - ,赖氨酸 + )离子对或盐桥(氢键结合的离子对)对螺旋的稳定作用。结果如下。(i)所有四种肽都显示出显著的螺旋形成,并且在研究的浓度范围内,α-螺旋的稳定性不依赖于肽浓度。最佳的螺旋形成肽是(i + 4)E,K,在pH 7和0℃的0.01 M NaCl中显示出约80%的螺旋度。(ii)两种i + 4肽比i + 3肽显示出更多的螺旋形成。pH滴定没有证据表明i + 3离子对能稳定螺旋。(iii)令人惊讶的是,在极端pH值(pH 2和pH 12)以及pH 7时,i + 4肽形成的螺旋比i + 3肽更稳定。这些结果可以通过在pH 7时通过谷氨酸 -...赖氨酸 + 盐桥以及在pH 2(谷氨酸0...赖氨酸 + )和pH 12(谷氨酸 -...赖氨酸0)时通过单电荷氢键来稳定螺旋来解释。这些连接在i + 4肽中比在i + 3肽中更有效地稳定α-螺旋的原因尚不清楚。(iv)谷氨酸和赖氨酸残基位置的颠倒通常以这些带电基团与螺旋偶极子相互作用所预期的方式影响螺旋稳定性。(v)这些基于丙氨酸的肽中的α-螺旋形成是由焓驱动的,核糖核酸酶A的C肽形成螺旋也是如此。

相似文献

1
Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898-902. doi: 10.1073/pnas.84.24.8898.
2
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.
3
Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.
4
The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide.
Biochemistry. 1993 Sep 21;32(37):9668-76. doi: 10.1021/bi00088a019.
5
Anticooperativity in a Glu-Lys-Glu salt bridge triplet in an isolated alpha-helical peptide.
Biochemistry. 2005 Aug 9;44(31):10449-56. doi: 10.1021/bi0508690.
7
Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions.
Biochemistry. 2007 Sep 18;46(37):10528-37. doi: 10.1021/bi700701z. Epub 2007 Aug 25.
8
Salt bridges do not stabilize polyproline II helices.
Biochemistry. 2003 Dec 16;42(49):14690-5. doi: 10.1021/bi035565x.
10
Unusually stable helix formation in short alanine-based peptides.
Proc Natl Acad Sci U S A. 1989 Jul;86(14):5286-90. doi: 10.1073/pnas.86.14.5286.

引用本文的文献

1
Transition Dipole Strength as a Quantitative Tool for Protein Secondary Structure Analysis.
J Phys Chem B. 2025 Aug 21;129(33):8382-8391. doi: 10.1021/acs.jpcb.5c04203. Epub 2025 Aug 6.
2
Backbone Hydration of -Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity.
Mol Phys. 2024;122(21-22). doi: 10.1080/00268976.2024.2323637. Epub 2024 Mar 5.
3
The Iconic α-Helix: From Pauling to the Present.
Methods Mol Biol. 2025;2867:1-17. doi: 10.1007/978-1-0716-4196-5_1.
4
Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes.
Biomacromolecules. 2024 May 13;25(5):2838-2851. doi: 10.1021/acs.biomac.4c00002. Epub 2024 Apr 3.
7
Efficient enumeration and visualization of helix-coil ensembles.
Biophys J. 2024 Feb 6;123(3):317-333. doi: 10.1016/j.bpj.2023.12.021. Epub 2023 Dec 29.
8
Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against .
Open Biol. 2023 Nov;13(11):230330. doi: 10.1098/rsob.230330. Epub 2023 Nov 8.
9
Integrative modeling of guanylate binding protein dimers.
Protein Sci. 2023 Dec;32(12):e4818. doi: 10.1002/pro.4818.
10
Molecular characterization, expression patterns and cellular localization of gene in male Hezuo pig.
PeerJ. 2023 Oct 24;11:e16341. doi: 10.7717/peerj.16341. eCollection 2023.

本文引用的文献

1
Some factors in the interpretation of protein denaturation.
Adv Protein Chem. 1959;14:1-63. doi: 10.1016/s0065-3233(08)60608-7.
2
THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES.
J Am Chem Soc. 1965 Jan 20;87:218-28. doi: 10.1021/ja01080a015.
3
A modified ninhydrin colorimetric analysis for amino acids.
Arch Biochem Biophys. 1957 Mar;67(1):10-5. doi: 10.1016/0003-9861(57)90241-2.
5
On the fundamental role of the Glu 2- ... Arg 10+ salt bridge in the folding of isolated ribonuclease A S-peptide.
Biochem Biophys Res Commun. 1984 Sep 17;123(2):757-63. doi: 10.1016/0006-291x(84)90294-8.
6
A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A.
Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470-4. doi: 10.1073/pnas.79.8.2470.
9
The synthesis and circular dichroism of a series of peptides possessing the structure (L-tyrosyl-L-alanyl-L-glutamyl)n.
Eur J Biochem. 1971 Jun 11;20(3):301-8. doi: 10.1111/j.1432-1033.1971.tb01394.x.
10
Helix-coil transition of the isolated amino terminus of ribonuclease.
Biochemistry. 1971 Feb 2;10(3):470-6. doi: 10.1021/bi00779a019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验