Woo Michael H, Losasso Carmen, Guo Hong, Pattarello Luca, Benedetti Piero, Bjornsti Mary-Ann
Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13767-72. doi: 10.1073/pnas.2235886100. Epub 2003 Oct 29.
Eukaryotic DNA topoisomerase I (Top1) is a monomeric protein clamp that functions in DNA replication, transcription, and recombination. Opposable "lip" domains form a salt bridge to complete Top1 protein clamping of duplex DNA. Changes in DNA topology are catalyzed by the formation of a transient phosphotyrosyl linkage between the active-site Tyr-723 and a single DNA strand. Substantial protein domain movements are required for DNA binding, whereas the tight packing of DNA within the covalent Top1-DNA complex necessitates some DNA distortion to allow rotation. To investigate the effects of Top1-clamp closure on enzyme catalysis, molecular modeling was used to design a disulfide bond between residues Gly-365 and Ser-534, to crosslink protein loops more proximal to the active-site tyrosine than the protein loops held by the Lys-369-Glu-497 salt bridge. In reducing environments, Top1-Clamp was catalytically active. However, contrary to crosslinking the salt-bridge loops [Carey, J. F., Schultz, S. J., Sission, L., Fazzio, T. G. & Champoux, J. J. (2003) Proc. Natl. Acad. Sci. USA 100, 5640-5645], crosslinking the active-site proximal loops inhibited DNA rotation. Apparently, subtle alterations in Top1 clamp flexibility impact enzyme catalysis in vitro. Yet, the catalytically active Top1-Clamp was cytotoxic, even in the reducing environment of yeast cells. Remarkably, a shift in redox potential in glr1Delta cells converted the catalytically inactive Top1Y723F mutant clamp into a cellular toxin, which failed to induce an S-phase terminal phenotype. This cytotoxic mechanism is distinct from that of camptothecin chemotherapeutics, which stabilize covalent Top1-DNA complexes, and it suggests that the development of novel therapeutics that promote Top1-clamp closure is possible.
真核生物DNA拓扑异构酶I(Top1)是一种单体蛋白夹子,在DNA复制、转录和重组过程中发挥作用。相对的“唇”结构域形成盐桥,以完成Top1对双链DNA的蛋白夹闭。DNA拓扑结构的变化由活性位点Tyr-723与单链DNA之间形成的瞬时磷酸酪氨酸连接催化。DNA结合需要大量蛋白质结构域的移动,而共价Top1-DNA复合物中DNA的紧密堆积需要一些DNA扭曲以允许旋转。为了研究Top1夹子闭合对酶催化的影响,利用分子建模设计了甘氨酸-365和丝氨酸-534残基之间的二硫键,以交联比由赖氨酸-369-谷氨酸-497盐桥固定的蛋白环更靠近活性位点酪氨酸的蛋白环。在还原环境中,Top1夹子具有催化活性。然而,与交联盐桥环[Carey, J. F., Schultz, S. J., Sission, L., Fazzio, T. G. & Champoux, J. J. (2003) Proc. Natl. Acad. Sci. USA 100, 5640-5645]相反,交联活性位点近端环抑制了DNA旋转。显然,Top1夹子灵活性的细微改变会影响体外酶催化。然而,具有催化活性的Top1夹子具有细胞毒性,即使在酵母细胞的还原环境中也是如此。值得注意的是,glr1Delta细胞中氧化还原电位的变化将催化无活性的Top1Y723F突变夹子转化为细胞毒素,该毒素未能诱导S期终末表型。这种细胞毒性机制不同于喜树碱化疗药物的机制,喜树碱化疗药物可稳定共价Top1-DNA复合物,这表明开发促进Top1夹子闭合的新型治疗方法是可能的。