Palle Komaraiah, Pattarello Luca, van der Merwe Marié, Losasso Carmen, Benedetti Piero, Bjornsti Mary-Ann
Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38015.
Department of Biology, University of Padua, Via U. Bassi 58/B, Padova, PD 35131, Italy.
J Biol Chem. 2008 Oct 10;283(41):27767-27775. doi: 10.1074/jbc.M804826200. Epub 2008 Aug 8.
In eukaryotes, DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a conserved mechanism of transient DNA strand breakage, rotation, and religation. The unusual architecture of the monomeric human enzyme comprises a conserved protein clamp, which is tightly wrapped about duplex DNA, and an extended coiled-coil linker domain that appropriately positions the C-terminal active site tyrosine domain against the Top1 core to form the catalytic pocket. A structurally undefined N-terminal domain, dispensable for enzyme activity, mediates protein-protein interactions. Previously, reversible disulfide bonds were designed to assess whether locking the Top1 clamp around duplex DNA would restrict DNA strand rotation within the covalent Top1-DNA intermediate. The active site proximal disulfide bond in full-length Top1-clamp(534) restricted DNA rotation (Woo, M. H., Losasso, C., Guo, H., Pattarello, L., Benedetti, P., and Bjornsti, M. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 13767-13772), whereas the more distal disulfide bond of the N-terminally truncated Topo70-clamp(499) did not (Carey, J. F., Schultz, S. J., Sisson, L., Fazzio, T. G., and Champoux, J. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 5640-5645). To assess the contribution of the N-terminal domain to the dynamics of Top1 clamping of DNA, the same disulfide bonds were engineered into full-length Top1 and truncated Topo70, and the activities of these proteins were assessed in vitro and in yeast. Here we report that the N terminus impacts the opening and closing of the Top1 protein clamp. We also show that the architecture of yeast and human Top1 is conserved in so far as cysteine substitutions of the corresponding residues suffice to lock the Top1-clamp. However, the composition of the divergent N-terminal/linker domains impacts Top1-clamp activity and stability in vivo.
在真核生物中,DNA拓扑异构酶I(Top1)通过一种保守的机制催化超螺旋DNA的松弛,该机制包括瞬时DNA链断裂、旋转和重新连接。单体人类酶的独特结构包括一个保守的蛋白质夹子,它紧紧包裹着双链DNA,以及一个延伸的卷曲螺旋连接域,该连接域将C端活性位点酪氨酸域相对于Top1核心正确定位,以形成催化口袋。一个结构未明的N端结构域介导蛋白质-蛋白质相互作用,该结构域对酶活性而言并非必需。此前,人们设计了可逆二硫键来评估将Top1夹子锁定在双链DNA周围是否会限制共价Top1-DNA中间体中的DNA链旋转。全长Top1-夹子(534)中活性位点近端的二硫键限制了DNA旋转(Woo,M. H.,Losasso,C.,Guo,H.,Pattarello,L.,Benedetti,P.,和Bjornsti,M. A.(2003年)美国国家科学院院刊100,13767 - 13772),而N端截短的Topo70-夹子(499)中更远端的二硫键则没有(Carey,J. F.,Schultz,S. J.,Sisson,L.,Fazzio,T. G.,和Champoux,J. J.(2003年)美国国家科学院院刊100,5640 - 5645)。为了评估N端结构域对Top1夹住DNA动态过程的贡献,将相同的二硫键构建到全长Top1和截短的Topo70中,并在体外和酵母中评估这些蛋白质的活性。在此我们报告,N端会影响Top1蛋白质夹子的打开和关闭。我们还表明,酵母和人类Top1的结构是保守的,因为相应残基的半胱氨酸替代足以锁定Top1-夹子。然而,不同N端/连接域的组成会影响Top1-夹子在体内的活性和稳定性。