Konings W N, Tolner B, Speelmans G, Elferink M G, de Wit J G, Driessen A J
Department of Microbiology, University of Groningen, Haren, The Netherlands.
J Bioenerg Biomembr. 1992 Dec;24(6):601-9. doi: 10.1007/BF00762352.
Bacterial growth at the extremes of temperature has remained a fascinating aspect in the study of membrane function and structure. The stability of the integral membrane proteins of thermophiles make them particularly amenable to study. Respiratory enzymes of thermophiles appear to be functionally similar to the mesophilic enzymes but differ in their thermostability and unusual high turnover rates. Energy coupling at extreme temperatures seems inefficient as suggested by the high maintenance coefficients and the high permeability of the cell membrane to protons. Nevertheless, membranes maintain their structure at these extremes through changes in fatty acid acyl chain composition. Archaebacteria synthesize novel membrane-spanning lipids with unique physical characteristics. Thermophiles have adapted to life at extreme temperatures by using sodium ions rather than protons as coupling ions in solute transport. Genetic and biochemical studies of these systems now reveal fundamental principles of such adaptations. The recent development of reconstitution techniques using membrane-spanning lipids allows a rigorous biochemical characterization of membrane proteins of extreme thermophiles in their natural environment.
在极端温度下细菌的生长一直是膜功能与结构研究中一个引人入胜的方面。嗜热菌的整合膜蛋白的稳定性使其特别适合用于研究。嗜热菌的呼吸酶在功能上似乎与嗜温菌的酶相似,但在热稳定性和异常高的周转率方面有所不同。如高维持系数和细胞膜对质子的高渗透性所表明的那样,在极端温度下的能量偶联似乎效率低下。然而,膜通过脂肪酸酰基链组成的变化在这些极端条件下维持其结构。古细菌合成具有独特物理特性的新型跨膜脂质。嗜热菌通过在溶质运输中使用钠离子而非质子作为偶联离子来适应极端温度下的生活。现在对这些系统的遗传和生化研究揭示了此类适应的基本原理。使用跨膜脂质的重组技术的最新发展使得能够在其天然环境中对极端嗜热菌的膜蛋白进行严格的生化表征。