Suppr超能文献

白色念珠菌中的超氧化物歧化酶:菌丝诱导型SOD5基因的转录调控与功能表征

Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene.

作者信息

Martchenko Mikhail, Alarco Anne-Marie, Harcus Doreen, Whiteway Malcolm

机构信息

Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.

出版信息

Mol Biol Cell. 2004 Feb;15(2):456-67. doi: 10.1091/mbc.e03-03-0179. Epub 2003 Nov 14.

Abstract

Superoxide dismutases (SOD) convert superoxide radicals into less damaging hydrogen peroxide. The opportunistic human pathogen Candida albicans is known to express CuZnSOD (SOD1) and MnSOD (SOD3) in the cytosol and MnSOD (SOD2) in the mitochondria. We identified three additional CuZn-containing superoxide dismutases, SOD4, SOD5, and SOD6, within the sequence of the C. albicans genome. The transcription of SOD5 was up-regulated during the yeast to hyphal transition of C. albicans, and SOD5 was induced when C. albicans cells were challenged with osmotic or with oxidative stresses. SOD5 transcription was also increased when cells were grown on nonfermentable substrates as the only carbon source. The Rim101p transcription factor was required for all inductions observed, whereas the Efg1p transcription factor was specifically needed for serum-modulated expression. Deletion of SOD5 produced a viable mutant strain that showed sensitivity to hydrogen peroxide when cells were grown in nutrient-limited conditions. Sod5p was found to be necessary for the virulence of C. albicans in a mouse model of infection. However, the sod5 mutant strain showed the same resistance to macrophage attack as its parental strain, suggesting that the loss of virulence in not due to an increased sensitivity to macrophage attack.

摘要

超氧化物歧化酶(SOD)将超氧自由基转化为危害较小的过氧化氢。已知机会性人类病原体白色念珠菌在胞质溶胶中表达铜锌超氧化物歧化酶(CuZnSOD,SOD1)和锰超氧化物歧化酶(MnSOD,SOD3),在线粒体中表达锰超氧化物歧化酶(MnSOD,SOD2)。我们在白色念珠菌基因组序列中鉴定出另外三种含铜锌的超氧化物歧化酶,即SOD4、SOD5和SOD6。在白色念珠菌从酵母形态向菌丝形态转变过程中,SOD5的转录上调,并且当白色念珠菌细胞受到渗透压或氧化应激挑战时,SOD5会被诱导表达。当细胞以不可发酵底物作为唯一碳源生长时,SOD5的转录也会增加。所有观察到的诱导过程都需要Rim101p转录因子,而血清调节表达则特别需要Efg1p转录因子。缺失SOD5产生了一个有活力的突变菌株,当细胞在营养受限条件下生长时,该菌株对过氧化氢敏感。在感染小鼠模型中发现Sod5p对于白色念珠菌的毒力是必需的。然而,sod5突变菌株对巨噬细胞攻击的抗性与其亲本菌株相同,这表明毒力丧失并非由于对巨噬细胞攻击的敏感性增加所致。

相似文献

2
Copper-only superoxide dismutase enzymes and iron starvation stress in fungal pathogens.
J Biol Chem. 2020 Jan 10;295(2):570-583. doi: 10.1074/jbc.RA119.011084. Epub 2019 Dec 5.
3
Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5866-71. doi: 10.1073/pnas.1400137111. Epub 2014 Apr 7.
4
Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance.
Mol Microbiol. 2009 Jan;71(1):240-52. doi: 10.1111/j.1365-2958.2008.06528.x. Epub 2008 Nov 4.
7
Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.
J Biol Chem. 2019 Feb 22;294(8):2700-2713. doi: 10.1074/jbc.RA118.007095. Epub 2018 Dec 28.
8
Antioxidant activities of four superoxide dismutases in Metarhizium robertsii and their contributions to pest control potential.
Appl Microbiol Biotechnol. 2018 Nov;102(21):9221-9230. doi: 10.1007/s00253-018-9302-0. Epub 2018 Aug 17.
10
The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.
J Biol Chem. 2016 Sep 30;291(40):20911-20923. doi: 10.1074/jbc.M116.748251. Epub 2016 Aug 17.

引用本文的文献

1
and reciprocally promote their virulence factor secretion and pro-inflammatory effects.
Front Cell Infect Microbiol. 2025 Aug 22;15:1629373. doi: 10.3389/fcimb.2025.1629373. eCollection 2025.
2
Transcriptomics Uncovers Key Genes for Photodynamic Killing on Trichosporon asahii Biofilms.
Mycopathologia. 2025 May 18;190(3):42. doi: 10.1007/s11046-025-00949-3.
3
Stress responsive glycosylphosphatidylinositol-anchored protein SsGSP1 contributes to virulence.
Virulence. 2025 Dec;16(1):2503434. doi: 10.1080/21505594.2025.2503434. Epub 2025 May 18.
4
Commensalism and pathogenesis of Candida albicans at the mucosal interface.
Nat Rev Microbiol. 2025 Apr 17. doi: 10.1038/s41579-025-01174-x.
5
Inhibitory effect of copper chelators on the budding in .
Antimicrob Agents Chemother. 2025 May 7;69(5):e0003325. doi: 10.1128/aac.00033-25. Epub 2025 Apr 9.
6
Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in infecting the Asian honeybee larvae.
Front Microbiol. 2025 Mar 4;16:1551625. doi: 10.3389/fmicb.2025.1551625. eCollection 2025.
7
Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis.
Appl Microbiol Biotechnol. 2025 Jan 24;109(1):21. doi: 10.1007/s00253-025-13411-7.
8
The Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence.
mBio. 2024 Nov 13;15(11):e0274824. doi: 10.1128/mbio.02748-24. Epub 2024 Oct 18.
9
Production and Antibacterial Activity of Atypical Siderophore from sp. QCS59 Recovered from .
Pharmaceuticals (Basel). 2024 Aug 26;17(9):1126. doi: 10.3390/ph17091126.
10
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.
PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul.

本文引用的文献

1
Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC.
Eukaryot Cell. 2003 Aug;2(4):718-28. doi: 10.1128/EC.2.4.718-728.2003.
3
Stress-induced gene expression in Candida albicans: absence of a general stress response.
Mol Biol Cell. 2003 Apr;14(4):1460-7. doi: 10.1091/mbc.e02-08-0546.
6
Sodium azide reduces the thermotolerance of respiratively grown yeasts.
Curr Microbiol. 2002 Dec;45(6):394-9. doi: 10.1007/s00284-002-3758-x.
7
Metabolic specialization associated with phenotypic switching in Candidaalbicans.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14907-12. doi: 10.1073/pnas.232566499. Epub 2002 Oct 23.
8
Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition.
Mol Biol Cell. 2002 Oct;13(10):3452-65. doi: 10.1091/mbc.e02-05-0272.
10
Regulation and the role of Cu,Zn-containing superoxide dismutase in cell cycle progression of Schizosaccharomyces pombe.
Biochem Biophys Res Commun. 2002 Oct 4;297(4):854-62. doi: 10.1016/s0006-291x(02)02290-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验