Suppr超能文献

利用铜-only 超氧化物歧化酶的脆弱活性位点破坏真菌发病机制。

Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.

机构信息

From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and.

the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726.

出版信息

J Biol Chem. 2019 Feb 22;294(8):2700-2713. doi: 10.1074/jbc.RA118.007095. Epub 2018 Dec 28.

Abstract

Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen expresses three copper-only SODs, and deletion of one of them, , eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.

摘要

铜-only 超氧化物歧化酶(SOD)代表了一类新的 SOD 酶,它们只存在于真菌和卵菌中,且为细胞外酶。这些 SOD 对于肺部和全身性真菌感染中真菌病原体的毒力至关重要,我们在这里还展示了铜-only SOD 促进真菌生物膜存活的另一个作用。机会性真菌病原体 表达三种铜-only SOD,其中一种铜-only SOD( )缺失后,可在啮齿动物模型中消除静脉导管上的念珠菌生物膜。真菌铜-only SOD 具有不规则的活性部位,与 Cu,Zn-SOD 不同,其含有一个铜辅因子,异常开放于溶剂中,并且缺乏稳定铜结合的锌,这使得真菌铜-only SOD 极易受到金属螯合剂的影响。我们发现,与哺乳动物 Cu,Zn-SOD1 不同, SOD5 确实会迅速将其铜离子释放到金属螯合剂如 EDTA 中,Cu(II)的结合常数表明铜-only SOD5 对铜的亲和力远低于 Cu,Zn-SOD1。我们筛选了具有多种适应症的化合物,并确定了几种金属结合化合物,包括离子载体吡啶硫酮锌(PZ),它可以有效抑制 SOD5,但不抑制哺乳动物 Cu,Zn-SOD1。我们观察到 PZ 既可以作为促进有毒金属摄取的离子载体,又可以抑制铜-only SOD。本文讨论了铜-only SOD 脆弱的活性部位的优缺点,以及在抗真菌药物设计中利用这一脆弱性的可能性。

相似文献

1
Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.
J Biol Chem. 2019 Feb 22;294(8):2700-2713. doi: 10.1074/jbc.RA118.007095. Epub 2018 Dec 28.
2
The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.
J Biol Chem. 2016 Sep 30;291(40):20911-20923. doi: 10.1074/jbc.M116.748251. Epub 2016 Aug 17.
3
Copper-only superoxide dismutase enzymes and iron starvation stress in fungal pathogens.
J Biol Chem. 2020 Jan 10;295(2):570-583. doi: 10.1074/jbc.RA119.011084. Epub 2019 Dec 5.
4
Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5866-71. doi: 10.1073/pnas.1400137111. Epub 2014 Apr 7.
5
Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
J Biol Chem. 2018 Mar 30;293(13):4636-4643. doi: 10.1074/jbc.TM117.000182. Epub 2017 Dec 19.
6
Biochemical Analysis of SOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen .
ACS Infect Dis. 2022 Mar 11;8(3):584-595. doi: 10.1021/acsinfecdis.1c00590. Epub 2022 Feb 18.
7
Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5336-42. doi: 10.1073/pnas.1513447112. Epub 2015 Sep 8.
8
A role for Candida albicans superoxide dismutase enzymes in glucose signaling.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):814-820. doi: 10.1016/j.bbrc.2017.11.084. Epub 2017 Nov 14.
10
An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.
PLoS One. 2016 Dec 29;11(12):e0168400. doi: 10.1371/journal.pone.0168400. eCollection 2016.

引用本文的文献

3
The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans.
PLoS Pathog. 2023 Jun 26;19(6):e1011478. doi: 10.1371/journal.ppat.1011478. eCollection 2023 Jun.
4
Intestinal bacteria-a powerful weapon for fungal infections treatment.
Front Cell Infect Microbiol. 2023 Jun 2;13:1187831. doi: 10.3389/fcimb.2023.1187831. eCollection 2023.
6
COVID-19-induced neurological symptoms: focus on the role of metal ions.
Inflammopharmacology. 2023 Apr;31(2):611-631. doi: 10.1007/s10787-023-01176-2. Epub 2023 Mar 9.
7
Biochemical Analysis of SOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen .
ACS Infect Dis. 2022 Mar 11;8(3):584-595. doi: 10.1021/acsinfecdis.1c00590. Epub 2022 Feb 18.
8
Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules.
J Biol Chem. 2021 Dec;297(6):101374. doi: 10.1016/j.jbc.2021.101374. Epub 2021 Oct 31.
9
The Role of B-Cells and Antibodies against Vaccine Antigens in Invasive Candidiasis.
Vaccines (Basel). 2021 Oct 10;9(10):1159. doi: 10.3390/vaccines9101159.
10
Ceruloplasmin as a source of Cu for a fungal pathogen.
J Inorg Biochem. 2021 Jun;219:111424. doi: 10.1016/j.jinorgbio.2021.111424. Epub 2021 Mar 15.

本文引用的文献

1
A Luminal Loop of Wilson Disease Protein Binds Copper and Is Required for Protein Activity.
Biophys J. 2018 Sep 18;115(6):1007-1018. doi: 10.1016/j.bpj.2018.07.040. Epub 2018 Aug 16.
3
Elesclomol restores mitochondrial function in genetic models of copper deficiency.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8161-8166. doi: 10.1073/pnas.1806296115. Epub 2018 Jul 23.
4
The rational design of specific SOD1 inhibitors copper coordination and their application in ROS signaling research.
Chem Sci. 2016 Sep 1;7(9):6251-6262. doi: 10.1039/c6sc01272h. Epub 2016 Jun 16.
5
New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics.
Ann N Y Acad Sci. 2019 Jan;1435(1):57-78. doi: 10.1111/nyas.13739. Epub 2018 May 15.
6
Clioquinol, an alternative antimicrobial agent against common pathogenic microbe.
J Mycol Med. 2018 Sep;28(3):492-501. doi: 10.1016/j.mycmed.2018.03.007. Epub 2018 Apr 10.
7
Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens.
ACS Infect Dis. 2018 Jun 8;4(6):893-903. doi: 10.1021/acsinfecdis.8b00026. Epub 2018 Mar 14.
9
Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
J Biol Chem. 2018 Mar 30;293(13):4636-4643. doi: 10.1074/jbc.TM117.000182. Epub 2017 Dec 19.
10
Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis.
PLoS Pathog. 2017 Dec 1;13(12):e1006763. doi: 10.1371/journal.ppat.1006763. eCollection 2017 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验