Suppr超能文献

一种用于全外周阻力压力反射识别的非侵入性方法。

A noninvasive method for total peripheral resistance baroreflex identification.

作者信息

Mukkamala R, Cohen R J

机构信息

Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.

出版信息

Comput Cardiol. 2000;27:53-6.

Abstract

We developed a noninvasive method for estimating the static gains of the arterial and cardiopulmonary total peripheral resistance (TPR) baroreflexes. The method involves a system identification analysis of beat-to-beat fluctuations in arterial blood pressure (ABP), cardiac output (CO), and stroke volume (SV) in order to identify two transfer functions relating CO fluctuations to ABP fluctuations and SV fluctuations to ABP fluctuations. The static gains of each of the TPR baroreflexes may then be computed from the static gains of the two identified transfer functions. In order to evaluate the method, we constructed a computer model of the human cardiovascular system. We applied the method to data generated from the computer model and found close agreement between the estimated and actual static gains of the model TPR baroreflexes. We also applied the method to experimental human data and obtained encouraging results. These results motivate the experimental validation of the method.

摘要

我们开发了一种用于估计动脉和心肺总外周阻力(TPR)压力反射静态增益的非侵入性方法。该方法涉及对动脉血压(ABP)、心输出量(CO)和每搏输出量(SV)逐搏波动进行系统辨识分析,以确定两个将CO波动与ABP波动以及SV波动与ABP波动相关联的传递函数。然后,可以根据两个已识别传递函数的静态增益来计算每个TPR压力反射的静态增益。为了评估该方法,我们构建了一个人体心血管系统的计算机模型。我们将该方法应用于计算机模型生成的数据,并发现模型TPR压力反射的估计静态增益与实际静态增益之间有密切的一致性。我们还将该方法应用于人体实验数据并获得了令人鼓舞的结果。这些结果促使对该方法进行实验验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验