Borggreve S E, De Vries R, Dullaart R P F
Department of Endocrinology, University Hospital Groningen, Groningen, The Netherlands.
Eur J Clin Invest. 2003 Dec;33(12):1051-69. doi: 10.1111/j.1365-2362.2003.01263.x.
Insulin resistance and type 2 diabetes mellitus are generally accompanied by low HDL cholesterol and high plasma triglycerides, which are major cardiovascular risk factors. This review describes abnormalities in HDL metabolism and reverse cholesterol transport, i.e. the transport of cholesterol from peripheral cells back to the liver for metabolism and biliary excretion, in insulin resistance and type 2 diabetes mellitus. Several enzymes including lipoprotein lipase (LPL), hepatic lipase (HL) and lecithin: cholesterol acyltransferase (LCAT), as well as cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), participate in HDL metabolism and remodelling. Lipoprotein lipase hydrolyses lipoprotein triglycerides, thus providing lipids for HDL formation. Hepatic lipase reduces HDL particle size by hydrolysing its triglycerides and phospholipids. A decreased postheparin plasma LPL/HL ratio is a determinant of low HDL2 cholesterol in insulin resistance. The esterification of free cholesterol by LCAT increases HDL particle size. Plasma cholesterol esterification is unaltered or increased in type 2 diabetes mellitus, probably depending on the extent of triglyceride elevation. Subsequent CETP action results in transfer of cholesteryl esters from HDL towards triglyceride-rich lipoproteins, and is involved in decreasing HDL size. An increased plasma cholesteryl ester transfer is frequently observed in insulin-resistant conditions, and is considered to be a determinant of low HDL cholesterol. Phospholipid transfer protein generates small pre beta-HDL particles that are initial acceptors of cell-derived cholesterol. Its activity in plasma is elevated in insulin resistance and type 2 diabetes mellitus in association with high plasma triglycerides and obesity. In insulin resistance, the ability of plasma to promote cellular cholesterol efflux may be maintained consequent to increases in PLTP activity and pre beta-HDL. However, cellular cholesterol efflux to diabetic plasma is probably impaired. Besides, cellular abnormalities that are in part related to impaired actions of ATP binding cassette transporter 1 and scavenger receptor class B type I are likely to result in diminished cellular cholesterol efflux in the diabetic state. Whether hepatic metabolism of HDL-derived cholesterol and subsequent hepatobiliary transport is altered in insulin resistance and type 2 diabetes mellitus is unknown. Specific CETP inhibitors have been developed that exert major HDL cholesterol-raising effects in humans and retard atherosclerosis in animals. As an increased CETP-mediated cholesteryl ester transfer represents a plausible metabolic intermediate between high triglycerides and low HDL cholesterol, studies are warranted to evaluate the effects of these agents in insulin resistance- and diabetes-associated dyslipidaemia.
胰岛素抵抗和2型糖尿病通常伴有高密度脂蛋白胆固醇降低和血浆甘油三酯升高,而这两者都是主要的心血管危险因素。本综述描述了胰岛素抵抗和2型糖尿病中高密度脂蛋白代谢及胆固醇逆向转运(即胆固醇从外周细胞转运回肝脏进行代谢和胆汁排泄)的异常情况。包括脂蛋白脂肪酶(LPL)、肝脂肪酶(HL)和卵磷脂胆固醇酰基转移酶(LCAT)在内的几种酶,以及胆固醇酯转运蛋白(CETP)和磷脂转运蛋白(PLTP),都参与了高密度脂蛋白的代谢和重塑过程。脂蛋白脂肪酶水解脂蛋白甘油三酯,从而为高密度脂蛋白的形成提供脂质。肝脂肪酶通过水解高密度脂蛋白的甘油三酯和磷脂来减小其颗粒大小。肝素后血浆中LPL/HL比值降低是胰岛素抵抗中高密度脂蛋白2胆固醇水平低的一个决定因素。LCAT将游离胆固醇酯化会增加高密度脂蛋白的颗粒大小。2型糖尿病患者血浆胆固醇酯化不变或增加,这可能取决于甘油三酯升高的程度。随后,CETP的作用导致胆固醇酯从高密度脂蛋白向富含甘油三酯的脂蛋白转移,并参与减小高密度脂蛋白的大小。在胰岛素抵抗状态下,经常观察到血浆胆固醇酯转移增加,这被认为是高密度脂蛋白胆固醇水平低的一个决定因素。磷脂转运蛋白产生小的前β-高密度脂蛋白颗粒,这些颗粒是细胞源性胆固醇的初始受体。在胰岛素抵抗和2型糖尿病中,其血浆活性随着血浆甘油三酯升高和肥胖而升高。在胰岛素抵抗中,由于PLTP活性和前β-高密度脂蛋白增加,血浆促进细胞胆固醇流出的能力可能得以维持。然而,细胞向糖尿病血浆的胆固醇流出可能受损。此外,部分与ATP结合盒转运体1和B类I型清道夫受体功能受损相关的细胞异常,可能导致糖尿病状态下细胞胆固醇流出减少。胰岛素抵抗和2型糖尿病中高密度脂蛋白衍生胆固醇的肝脏代谢及随后的肝胆转运是否改变尚不清楚。已经开发出特异性CETP抑制剂,这些抑制剂在人体内具有显著升高高密度脂蛋白胆固醇的作用,并能延缓动物动脉粥样硬化的发展。由于CETP介导的胆固醇酯转移增加代表了高甘油三酯和低高密度脂蛋白胆固醇之间一个合理的代谢中间环节,因此有必要开展研究来评估这些药物对胰岛素抵抗和糖尿病相关血脂异常的影响。