Suppr超能文献

结合电生理学、钙成像和共聚焦显微镜对蜜蜂嗅觉神经元进行生理和形态学表征。

Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy.

作者信息

Galizia C G, Kimmerle B

机构信息

Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin Luise Str. 28-30, 14195 Berlin, Germany.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Jan;190(1):21-38. doi: 10.1007/s00359-003-0469-0. Epub 2003 Nov 25.

Abstract

The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known.

摘要

昆虫的触角叶是处理嗅觉信息的首个脑结构。与脊椎动物的嗅球一样,触角叶在嗅觉小球中具有亚结构。在昆虫中,嗅觉小球在形态上可以识别,并且具有特征性的嗅觉反应图谱。局部神经元将各个嗅觉小球相互连接,而输出(投射)神经元则投射到更高阶的脑中枢。它们精细的形态与其生理功能之间的关系尚不清楚。我们对触角叶神经元进行了电生理记录,并通过离子电泳注入了一种钙敏染料。然后,我们测量了它们对各种气味的时空钙反应。最后,我们用共聚焦显微镜重建了神经元,并确定了其支配的嗅觉小球。放电频率的增加或减少对应于细胞内钙的增加或减少。虽然细胞内记录通常持续10到30分钟,但钙成像在长达2小时内都是稳定的,从而可以进行更详细的生理分析。这些反应表明,异质性的局部神经元在其分支最强烈的嗅觉小球中接收输入。在许多情况下,细胞的生理反应特性与所支配嗅觉小球的已知反应图谱相对应。换句话说,当已知所支配的嗅觉小球时,在比较触角叶神经元时通常发现的各种各样的反应图谱就会简化为一个更可预测的反应图谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验