Greiber S, Mitch W E
Renal Division, Emory University School of Medicine, Atlanta, GA.
Miner Electrolyte Metab. 1992;18(2-5):233-6.
Accelerated protein catabolism in uremia occurs in animals and patients with acute (ARF) and chronic renal failure (CRF). Possible causes include resistance to both insulin-induced inhibition of protein-degradation and insulin-induced stimulation of protein synthesis. The mechanisms for these effects are unknown. However, metabolic acidosis has been shown to increase proteolysis in rat skeletal muscle even in the presence of insulin and this effect is absent in adrenalectomized rats. Similarly, metabolic acidosis accounts for increased muscle proteolysis in rats with CRF. Metabolic acidosis also stimulates branched-chain amino acid (BCAA) breakdown by increasing the activity of branched-chain keto acid decarboxylase. Uremia causes high corticosterone levels in ARF and CRF and this hormone could contribute significantly to increased proteolysis, BCAA-breakdown and possibly, the inhibition of protein synthesis. Besides changing glucocorticoids, uremia could inhibit the activity of transporters which regulate intracellular pH and ultimately, the metabolism of protein and amino acids. For example, uremia inhibits ion transporters including Na/H exchange in a variety of tissues and therefore, could increase the susceptibility to metabolic acidosis. Research directed at identifying specific, proteolytic pathways stimulated by metabolic acidosis has excluded a major role for Ca2+ activated and lysosomal proteases and suggests activation of an ATP- and ubiquitin-dependent proteolytic pathway.
在患有急性肾衰竭(ARF)和慢性肾衰竭(CRF)的动物及患者中,尿毒症会加速蛋白质分解代谢。可能的原因包括对胰岛素诱导的蛋白质降解抑制和胰岛素诱导的蛋白质合成刺激产生抵抗。这些作用的机制尚不清楚。然而,已表明代谢性酸中毒即使在有胰岛素存在的情况下也会增加大鼠骨骼肌中的蛋白水解作用,而在肾上腺切除的大鼠中这种作用不存在。同样,代谢性酸中毒是CRF大鼠肌肉蛋白水解增加的原因。代谢性酸中毒还通过增加支链酮酸脱羧酶的活性来刺激支链氨基酸(BCAA)分解。尿毒症会导致ARF和CRF患者体内皮质酮水平升高,这种激素可能在蛋白水解增加、BCAA分解以及可能对蛋白质合成的抑制中起重要作用。除了改变糖皮质激素外,尿毒症可能会抑制调节细胞内pH值以及最终蛋白质和氨基酸代谢的转运蛋白的活性。例如,尿毒症会抑制包括多种组织中Na/H交换在内的离子转运蛋白,因此可能会增加对代谢性酸中毒的易感性。针对确定由代谢性酸中毒刺激的特定蛋白水解途径的研究排除了Ca2+激活蛋白酶和溶酶体蛋白酶的主要作用,并提示激活了一种依赖ATP和泛素的蛋白水解途径。