Clark A, Nilsson M R
Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK.
Diabetologia. 2004 Feb;47(2):157-69. doi: 10.1007/s00125-003-1304-4. Epub 2004 Jan 13.
The role of islet amyloidosis in the onset and progression of Type 2 diabetes remains obscure. Islet amyloid polypeptide is a 37 amino-acid, beta-cell peptide which is co-stored and co-released with insulin. Human islet amyloid polypeptide refolds to a beta-conformation and oligomerises to form insoluble fibrils; proline substitutions in rodent islet amyloid polypeptide prevent this molecular transition. Pro-islet amyloid polypeptide (67 amino acids in man) is processed in secretory granules. Refolding of islet amyloid polypeptide may be prevented by intragranular heterodimer formation with insulin (but not proinsulin). Diabetes-associated abnormal proinsulin processing could contribute to de-stabilisation of granular islet amyloid polypeptide. Increased pro-islet amyloid polypeptide secretion as a consequence of islet dysfunction could promote fibrillogenesis; the propeptide forms fibrils and binds to basement membrane glycosamino-glycans. Islet amyloid polypeptide gene polymorphisms are not universally associated with Type 2 diabetes. Transgenic mice expressing human islet amyloid polypeptide gene have increased islet amyloid polypeptide concentrations but develop islet amyloid only against a background of obesity and/or high fat diet. In transgenic mice, obese monkeys and cats, initially small perivascular deposits progressively increase to occupy 80% islet mass; the severity of amyloidosis in animal models is related to the onset of hyperglycaemia, suggesting that islet amyloid and the associated destruction of islet cells cause diabetes. In human diabetes, islet amyloid can affect less than 1% or up to 80% of islets indicating that islet amyloidosis largely results from diabetes-related pathologies and is not an aetiological factor for hyperglycaemia. However, the associated progressive beta-cell destruction leads to severe islet dysfunction and insulin requirement.
胰岛淀粉样变在2型糖尿病发病及进展中的作用仍不清楚。胰岛淀粉样多肽是一种由37个氨基酸组成的β细胞肽,与胰岛素共同储存和释放。人胰岛淀粉样多肽可重折叠成β构象并寡聚化形成不溶性纤维;啮齿动物胰岛淀粉样多肽中的脯氨酸替代可阻止这种分子转变。前胰岛淀粉样多肽(人有67个氨基酸)在分泌颗粒中加工。胰岛淀粉样多肽的重折叠可能因与胰岛素(而非胰岛素原)在颗粒内形成异二聚体而受到阻止。与糖尿病相关的胰岛素原加工异常可能导致颗粒状胰岛淀粉样多肽不稳定。胰岛功能障碍导致的前胰岛淀粉样多肽分泌增加可能促进纤维形成;前体肽形成纤维并与基底膜糖胺聚糖结合。胰岛淀粉样多肽基因多态性并非普遍与2型糖尿病相关。表达人胰岛淀粉样多肽基因的转基因小鼠胰岛淀粉样多肽浓度增加,但仅在肥胖和/或高脂饮食背景下才会出现胰岛淀粉样变。在转基因小鼠、肥胖猴和猫中,最初小的血管周围沉积物逐渐增加,占据80%的胰岛质量;动物模型中淀粉样变的严重程度与高血糖的发生有关,提示胰岛淀粉样变及相关的胰岛细胞破坏导致糖尿病。在人类糖尿病中,胰岛淀粉样变可累及不到1%或高达80%的胰岛,表明胰岛淀粉样变很大程度上是由糖尿病相关病理改变引起的,而非高血糖的病因。然而,相关的进行性β细胞破坏会导致严重的胰岛功能障碍和胰岛素需求增加。